In this tutorial , I will explain how to integrate Google's BigQuery API with web application. My web application is going to get the data using BigQuery and plot a graph using d3.js and Javascript.
Each project on Google Developers Console has a clientID and you need to copy the clientID and put it as a config:
var gconfig = {
'client_id': 'ClientID',
'scope': 'https://www.googleapis.com/auth/bigquery'
};
BigQuery API can be accessed in the following way:
$.getScript("https://apis.google.com/js/client.js", function(d) {
function loadGAPI() {
setTimeout(function() {
if (!gapi.client) {
loadGAPI();
} else {
loadBigQuery();
}
}, 500);
}
function loadBigQuery() {
gapi.client.load('bigquery', 'v2');
setTimeout(function() {
if (!gapi.client.bigquery) {
loadBigQuery();
} else {
onClientLoadHandler();
}
}, 500);
}
loadGAPI();
});
Also you'll need to mention the query which you are going to retrieve the data:
function runQuery() {
var request = gapi.client.bigquery.jobs.query({
'projectId': "bigdatameetup-83116",
'timeoutMs': '30000',
'query': 'SELECT DATE(date ) as date,SUM(INTEGER(orders)) as total_orders FROM [bigdatameetup-83116:Demo_Backup.orders] GROUP BY date ORDER BY date LIMIT 1000; '
});
request.execute(function(response) {
var bqData = [];
response.result.rows.forEach(function(d) {
bqData.push({"date": d3.time.format("%Y-%m-%d").parse(d.f[0].v),
"total_orders": +d.f[1].v});
});
drawLineChart(bqData);
});
}
The rest is the visualization, i.e the creation of Line Chart using d3.js:
function drawLineChart(bqData) {
var WIDTH = config.width, HEIGHT = config.height;
var Y_AXIS_LABEL = "total_orders";
var X_DATA_PARSE = d3.time.format("%d-%b-%y").parse;
var Y_DATA_PARSE = vida.number;
var X_DATA_TICK = d3.time.format("%b-%y");
var X_AXIS_COLUMN = "date";
var Y_AXIS_COLUMN = "total_orders";
var margin = {top: 20, right: 20, bottom: 30, left: 50},
width = WIDTH - margin.left - margin.right,
height = HEIGHT - margin.top - margin.bottom;
var x = d3.time.scale()
.range([0, width]);
var y = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom")
.tickFormat(X_DATA_TICK);
var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.tickFormat(function(d) {
return d / 1000000 + "M";
});
var line = d3.svg.line()
.interpolate("basis")
.x(function(d) { return x(d.x_axis); })
.y(function(d) { return y(d.y_axis); });
var svg = d3.select("#canvas-svg").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
bqData.forEach(function(d) {
d.x_axis = d[X_AXIS_COLUMN];
d.y_axis = d[Y_AXIS_COLUMN];
});
bqData.sort(function(a, b) {
return (new Date(a.x_axis)) - (new Date(b.x_axis));
});
x.domain(d3.extent(bqData, function(d) { return d.x_axis; }));
y.domain(d3.extent(bqData, function(d) { return d.y_axis; }));
svg.append("g")
.attr("class", "x axis")
.attr("transform", "translate(0," + height + ")")
.call(xAxis);
svg.append("g")
.attr("class", "y axis")
.call(yAxis)
.append("text")
.attr("transform", "rotate(-90)")
.attr("y", 6)
.attr("dy", ".71em")
.style("text-anchor", "end")
.text(Y_AXIS_LABEL);
svg.append("path")
.datum(bqData)
.attr("class", "line")
.attr("d", line);
}
In this example, I have chosen 'Amount' as x-axis and 'Date' as y axis from the public dataset:
nyc_taxi_public
You can find the full working sample in this link.