To use the Table API, add flink-table
as a maven dependency (in addition to flink-clients
and flink-core
):
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table_2.11</artifactId>
<version>1.1.4</version>
</dependency>
Ensure that the scala version (here 2.11) is compatible with your system.
Given the CSV file peoples.csv
:
1,Reed,United States,Female
2,Bradley,United States,Female
3,Adams,United States,Male
4,Lane,United States,Male
5,Marshall,United States,Female
6,Garza,United States,Male
7,Gutierrez,United States,Male
8,Fox,Germany,Female
9,Medina,United States,Male
10,Nichols,United States,Male
11,Woods,United States,Male
12,Welch,United States,Female
13,Burke,United States,Female
14,Russell,United States,Female
15,Burton,United States,Male
16,Johnson,United States,Female
17,Flores,United States,Male
18,Boyd,United States,Male
19,Evans,Germany,Male
20,Stephens,United States,Male
We want to count people by country and by country+gender:
public class TableExample{
public static void main( String[] args ) throws Exception{
// create the environments
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
final BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment( env );
// get the path to the file in resources folder
String peoplesPath = TableExample.class.getClassLoader().getResource( "peoples.csv" ).getPath();
// load the csv into a table
CsvTableSource tableSource = new CsvTableSource(
peoplesPath,
"id,last_name,country,gender".split( "," ),
new TypeInformation[]{ Types.INT(), Types.STRING(), Types.STRING(), Types.STRING() } );
// register the table and scan it
tableEnv.registerTableSource( "peoples", tableSource );
Table peoples = tableEnv.scan( "peoples" );
// aggregation using chain of methods
Table countriesCount = peoples.groupBy( "country" ).select( "country, id.count" );
DataSet<Row> result1 = tableEnv.toDataSet( countriesCount, Row.class );
result1.print();
// aggregation using SQL syntax
Table countriesAndGenderCount = tableEnv.sql(
"select country, gender, count(id) from peoples group by country, gender" );
DataSet<Row> result2 = tableEnv.toDataSet( countriesAndGenderCount, Row.class );
result2.print();
}
}
The results are:
Germany,2
United States,18
Germany,Male,1
United States,Male,11
Germany,Female,1
United States,Female,7
In addition to peoples.csv
(see simple aggregation from a CSV) we have two more CSVs representing products and sales.
sales.csv
(people_id, product_id):
19,5
6,4
10,4
2,4
8,1
19,2
8,4
5,5
13,5
4,4
6,1
3,3
8,3
17,2
6,2
1,2
3,5
15,5
3,3
6,3
13,2
20,4
20,2
products.csv
(id, name, price):
1,Loperamide,47.29
2,pain relief pm,61.01
3,Citalopram,48.13
4,CTx4 Gel 5000,12.65
5,Namenda,27.67
We want to get the name and product for each sale of more than 40$:
public class SimpleJoinExample{
public static void main( String[] args ) throws Exception{
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
final BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment( env );
String peoplesPath = TableExample.class.getClassLoader().getResource( "peoples.csv" ).getPath();
String productsPath = TableExample.class.getClassLoader().getResource( "products.csv" ).getPath();
String salesPath = TableExample.class.getClassLoader().getResource( "sales.csv" ).getPath();
Table peoples = csvTable(
tableEnv,
"peoples",
peoplesPath,
"pe_id,last_name,country,gender",
new TypeInformation[]{ Types.INT(), Types.STRING(), Types.STRING(), Types.STRING() } );
Table products = csvTable(
tableEnv,
"products",
productsPath,
"prod_id,product_name,price",
new TypeInformation[]{ Types.INT(), Types.STRING(), Types.FLOAT() } );
Table sales = csvTable(
tableEnv,
"sales",
salesPath,
"people_id,product_id",
new TypeInformation[]{ Types.INT(), Types.INT() } );
// here is the interesting part:
Table join = peoples
.join( sales ).where( "pe_id = people_id" )
.join( products ).where( "product_id = prod_id" )
.select( "last_name, product_name, price" )
.where( "price < 40" );
DataSet<Row> result = tableEnv.toDataSet( join, Row.class );
result.print();
}//end main
public static Table csvTable( BatchTableEnvironment tableEnv, String name, String path, String header,
TypeInformation[]
typeInfo ){
CsvTableSource tableSource = new CsvTableSource( path, header.split( "," ), typeInfo);
tableEnv.registerTableSource( name, tableSource );
return tableEnv.scan( name );
}
}//end class
Note that it is important to use different names for each column, otherwise flink will complain about "ambiguous names in join".
Result:
Burton,Namenda,27.67
Marshall,Namenda,27.67
Burke,Namenda,27.67
Adams,Namenda,27.67
Evans,Namenda,27.67
Garza,CTx4 Gel 5000,12.65
Fox,CTx4 Gel 5000,12.65
Nichols,CTx4 Gel 5000,12.65
Stephens,CTx4 Gel 5000,12.65
Bradley,CTx4 Gel 5000,12.65
Lane,CTx4 Gel 5000,12.65
A Table can be written to a TableSink, which is a generic interface to support different formats and file systems. A batch Table can only be written to a BatchTableSink
, while a streaming table requires a StreamTableSink
.
Currently, flink offers only the CsvTableSink
interface.
In the examples above, replace:
DataSet<Row> result = tableEnv.toDataSet( table, Row.class );
result.print();
with:
TableSink sink = new CsvTableSink("/tmp/results", ",");
// write the result Table to the TableSink
table.writeToSink(sink);
// start the job
env.execute();
/tmp/results
is a folder, because flink does parallel operations. Hence, if you have 4 processors, you will likely have 4 files in the results folder.
Also, note that we explicitely call env.execute()
: this is necessary to start a flink job, but in the previous examples print()
did it for us.