-lm
with gcc flags.errno
to zero, and make the following call feclearexcept(FE_ALL_EXCEPT);
before calling a mathematical function. Upon return from the mathematical function, if errno
is nonzero, or the following call returns nonzero fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW);
then an error occurred in the mathematical function. Read manpage of math_error for more information.This function returns the floating-point remainder of the division of x/y
. The returned value has the same sign as x.
#include <math.h> /* for fmod() */
#include <stdio.h> /* for printf() */
int main(void)
{
double x = 10.0;
double y = 5.1;
double modulus = fmod(x, y);
printf("%lf\n", modulus); /* f is the same as lf. */
return 0;
}
Output:
4.90000
Important: Use this function with care, as it can return unexpected values due to the operation of floating point values.
#include <math.h>
#include <stdio.h>
int main(void)
{
printf("%f\n", fmod(1, 0.1));
printf("%19.17f\n", fmod(1, 0.1));
return 0;
}
Output:
0.1
0.09999999999999995
These functions returns the floating-point remainder of the division of x/y
. The returned value has the same sign as x.
Single Precision:
#include <math.h> /* for fmodf() */
#include <stdio.h> /* for printf() */
int main(void)
{
float x = 10.0;
float y = 5.1;
float modulus = fmodf(x, y);
printf("%f\n", modulus); /* lf would do as well as modulus gets promoted to double. */
}
Output:
4.90000
Double Double Precision:
#include <math.h> /* for fmodl() */
#include <stdio.h> /* for printf() */
int main(void)
{
long double x = 10.0;
long double y = 5.1;
long double modulus = fmodl(x, y);
printf("%Lf\n", modulus); /* Lf is for long double. */
}
Output:
4.90000
The following example code computes the sum of 1+4(3+3^2+3^3+3^4+...+3^N) series using pow() family of standard math library.
#include <stdio.h>
#include <math.h>
#include <errno.h>
#include <fenv.h>
int main()
{
double pwr, sum=0;
int i, n;
printf("\n1+4(3+3^2+3^3+3^4+...+3^N)=?\nEnter N:");
scanf("%d",&n);
if (n<=0) {
printf("Invalid power N=%d", n);
return -1;
}
for (i=0; i<n+1; i++) {
errno = 0;
feclearexcept(FE_ALL_EXCEPT);
pwr = powl(3,i);
if (fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW)) {
perror("Math Error");
}
sum += i ? pwr : 0;
printf("N= %d\tS= %g\n", i, 1+4*sum);
}
return 0;
}
Example Output:
1+4(3+3^2+3^3+3^4+...+3^N)=?
Enter N:10
N= 0 S= 1
N= 1 S= 13
N= 2 S= 49
N= 3 S= 157
N= 4 S= 481
N= 5 S= 1453
N= 6 S= 4369
N= 7 S= 13117
N= 8 S= 39361
N= 9 S= 118093
N= 10 S= 354289