Computing summary statistics

Other topics

Remarks:

A reminder: DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

  • The "where" part is the i argument
  • The "select|update|do" part is the j argument

These two arguments are usually passed by position instead of by name.

Counting rows by group

# example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

Using .N

.N in j stores the number of rows in a subset. When exploring data, .N is handy to...

  1. count rows in a group,

    DT[Species == "setosa", .N]
    
    # 50
    
  2. or count rows in all groups,

    DT[, .N, by=.(Species, Bin)]
    
    #       Species   Bin  N
    # 1:     setosa (4,6] 50
    # 2: versicolor (6,8] 20
    # 3: versicolor (4,6] 30
    # 4:  virginica (6,8] 41
    # 5:  virginica (4,6]  9
    
  3. or find groups that have a certain number of rows.

    DT[, .N, by=.(Species, Bin)][ N < 25 ]
    
    #       Species   Bin  N
    # 1: versicolor (6,8] 20
    # 2:  virginica (4,6]  9
    

Handling missing groups

However, we are missing groups with a count of zero above. If they matter, we can use table from base:

DT[, data.table(table(Species, Bin))][ N < 25 ]

#       Species   Bin  N
# 1:  virginica (4,6]  9
# 2:     setosa (6,8]  0
# 3: versicolor (6,8] 20

Alternately, we can join on all groups:

DT[CJ(Species=Species, Bin=Bin, unique=TRUE), on=c("Species","Bin"), .N, by=.EACHI][N < 25]

#       Species   Bin  N
# 1:     setosa (6,8]  0
# 2: versicolor (6,8] 20
# 3:  virginica (4,6]  9

A note on .N:

  • This example uses .N in j, where it refers to size of a subset.
  • In i, it refers to the total number of rows.

Custom summaries

# example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

Suppose we want the summary function output for Sepal.Length along with the number of observations:

DT[, c(
    as.list(summary(Sepal.Length)),
    N = .N
), by=.(Species, Bin)]

#       Species   Bin Min. 1st Qu. Median  Mean 3rd Qu. Max.  N
# 1:     setosa (4,6]  4.3     4.8    5.0 5.006     5.2  5.8 50
# 2: versicolor (6,8]  6.1     6.2    6.4 6.450     6.7  7.0 20
# 3: versicolor (4,6]  4.9     5.5    5.6 5.593     5.8  6.0 30
# 4:  virginica (6,8]  6.1     6.4    6.7 6.778     7.2  7.9 41
# 5:  virginica (4,6]  4.9     5.7    5.8 5.722     5.9  6.0  9

We have to make j a list of columns. Usually, some playing around with c, as.list and . is enough to figure out the correct way to proceed.

Assigning summary statistics as new columns

Instead of making a summary table, we may want to store a summary statistic in a new column. We can use := as usual. For example,

DT[, is_big := .N >= 25, by=.(Species, Bin)]

Pitfalls

Untidy data

If you find yourself wanting to parse column names, like

Take the mean of x.Length/x.Width where x takes ten different values.

then you are probably looking at data embedded in column names, which is a bad idea. Read about tidy data and then reshape to long format.

Rowwise summaries

Data frames and data.tables are well-designed for tabular data, where rows correspond to observations and columns to variables. If you find yourself wanting to summarize over rows, like

Find the standard deviation across columns for each row.

then you should probably be using a matrix or some other data format entirely.

The summary function

# example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

summary is handy for browsing summary statistics. Besides direct usage like summary(DT), it can also be applied per-group conveniently with split:

lapply(split(DT, by=c("Species", "Bin"), drop=TRUE, keep.by=FALSE), summary)

# $`setosa.(4,6]`
#   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
#  Min.   :4.300   Min.   :2.300   Min.   :1.000   Min.   :0.100  
#  1st Qu.:4.800   1st Qu.:3.200   1st Qu.:1.400   1st Qu.:0.200  
#  Median :5.000   Median :3.400   Median :1.500   Median :0.200  
#  Mean   :5.006   Mean   :3.428   Mean   :1.462   Mean   :0.246  
#  3rd Qu.:5.200   3rd Qu.:3.675   3rd Qu.:1.575   3rd Qu.:0.300  
#  Max.   :5.800   Max.   :4.400   Max.   :1.900   Max.   :0.600  
# 
# $`versicolor.(6,8]`
#   Sepal.Length   Sepal.Width    Petal.Length    Petal.Width  
#  Min.   :6.10   Min.   :2.20   Min.   :4.000   Min.   :1.20  
#  1st Qu.:6.20   1st Qu.:2.80   1st Qu.:4.400   1st Qu.:1.30  
#  Median :6.40   Median :2.90   Median :4.600   Median :1.40  
#  Mean   :6.45   Mean   :2.89   Mean   :4.585   Mean   :1.42  
#  3rd Qu.:6.70   3rd Qu.:3.10   3rd Qu.:4.700   3rd Qu.:1.50  
#  Max.   :7.00   Max.   :3.30   Max.   :5.000   Max.   :1.70  
# 
# [...results truncated...]

To include zero-count groups, set drop=FALSE in split.

Applying a summarizing function to multiple variables

# example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

To apply the same summarizing function to every column by group, we can use lapply and .SD

DT[, lapply(.SD, median), by=.(Species, Bin)]

#       Species   Bin Sepal.Length Sepal.Width Petal.Length Petal.Width
# 1:     setosa (4,6]          5.0         3.4         1.50         0.2
# 2: versicolor (6,8]          6.4         2.9         4.60         1.4
# 3: versicolor (4,6]          5.6         2.7         4.05         1.3
# 4:  virginica (6,8]          6.7         3.0         5.60         2.1
# 5:  virginica (4,6]          5.8         2.7         5.00         1.9

We can filter the columns in .SD with the .SDcols argument:

DT[, lapply(.SD, median), by=.(Species, Bin), .SDcols="Petal.Length"]

#       Species   Bin Petal.Length
# 1:     setosa (4,6]         1.50
# 2: versicolor (6,8]         4.60
# 3: versicolor (4,6]         4.05
# 4:  virginica (6,8]         5.60
# 5:  virginica (4,6]         5.00

Multiple summarizing functions

Currently, the simplest extension to multiple functions is perhaps:

DT[, unlist(recursive=FALSE, lapply(
    .(med = median, iqr = IQR),
    function(f) lapply(.SD, f)
)), by=.(Species, Bin), .SDcols=Petal.Length:Petal.Width]

#       Species   Bin med.Petal.Length med.Petal.Width iqr.Petal.Length iqr.Petal.Width
# 1:     setosa (4,6]             1.50             0.2            0.175           0.100
# 2: versicolor (6,8]             4.60             1.4            0.300           0.200
# 3: versicolor (4,6]             4.05             1.3            0.525           0.275
# 4:  virginica (6,8]             5.60             2.1            0.700           0.500
# 5:  virginica (4,6]             5.00             1.9            0.200           0.200

If you want the names to be like Petal.Length.med instead of med.Petal.Length, change the order:

DT[, unlist(recursive=FALSE, lapply(
    .SD,
    function(x) lapply(.(med = median, iqr = IQR), function(f) f(x))
)), by=.(Species, Bin), .SDcols=Petal.Length:Petal.Width]

#       Species   Bin Petal.Length.med Petal.Length.iqr Petal.Width.med Petal.Width.iqr
# 1:     setosa (4,6]             1.50            0.175             0.2           0.100
# 2: versicolor (6,8]             4.60            0.300             1.4           0.200
# 3: versicolor (4,6]             4.05            0.525             1.3           0.275
# 4:  virginica (6,8]             5.60            0.700             2.1           0.500
# 5:  virginica (4,6]             5.00            0.200             1.9           0.200

Contributors

Topic Id: 3785

Example Ids: 13079,13080,14017,14018

This site is not affiliated with any of the contributors.