Cgo enables the creation of Go packages that call C code.
To use cgo
write normal Go code that imports a pseudo-package "C". The Go code can then refer to types such as C.int
, or functions such as C.Add
.
The import of "C" is immediately preceded by a comment, that comment, called the preamble, is used as a header when compiling the C parts of the package.
Note that there must be no blank lines in between the cgo
comment and the import statement.
Note that import "C"
can not grouped with other imports into a parenthesized, "factored" import statement. You must write multiple import statements, like:
import "C"
import "fmt"
And it is good style to use the factored import statement, for other imports, like:
import "C"
import (
"fmt"
"math"
)
Simple example using cgo
:
package main
//int Add(int a, int b){
// return a+b;
//}
import "C"
import "fmt"
func main() {
a := C.int(10)
b := C.int(20)
c := C.Add(a, b)
fmt.Println(c) // 30
}
Then go build
, and run it, output:
30
To build cgo
packages, just use go build
or go install
as usual. The go tool
recognizes the special "C"
import and automatically uses cgo
for those files.
Calling C code from Go
package main
/*
// Everything in comments above the import "C" is C code and will be compiles with the GCC.
// Make sure you have a GCC installed.
int addInC(int a, int b) {
return a + b;
}
*/
import "C"
import "fmt"
func main() {
a := 3
b := 5
c := C.addInC(C.int(a), C.int(b))
fmt.Println("Add in C:", a, "+", b, "=", int(c))
}
Calling Go code from C
package main
/*
static inline int multiplyInGo(int a, int b) {
return go_multiply(a, b);
}
*/
import "C"
import (
"fmt"
)
func main() {
a := 3
b := 5
c := C.multiplyInGo(C.int(a), C.int(b))
fmt.Println("multiplyInGo:", a, "*", b, "=", int(c))
}
//export go_multiply
func go_multiply(a C.int, b C.int) C.int {
return a * b
}
Dealing with Function pointers
package main
/*
int go_multiply(int a, int b);
typedef int (*multiply_f)(int a, int b);
multiply_f multiply;
static inline init() {
multiply = go_multiply;
}
static inline int multiplyWithFp(int a, int b) {
return multiply(a, b);
}
*/
import "C"
import (
"fmt"
)
func main() {
a := 3
b := 5
C.init(); // OR:
C.multiply = C.multiply_f(go_multiply);
c := C.multiplyWithFp(C.int(a), C.int(b))
fmt.Println("multiplyInGo:", a, "+", b, "=", int(c))
}
//export go_multiply
func go_multiply(a C.int, b C.int) C.int {
return a * b
}
Convert Types, Access Structs and Pointer Arithmetic
From the official Go documentation:
// Go string to C string
// The C string is allocated in the C heap using malloc.
// It is the caller's responsibility to arrange for it to be
// freed, such as by calling C.free (be sure to include stdlib.h
// if C.free is needed).
func C.CString(string) *C.char
// Go []byte slice to C array
// The C array is allocated in the C heap using malloc.
// It is the caller's responsibility to arrange for it to be
// freed, such as by calling C.free (be sure to include stdlib.h
// if C.free is needed).
func C.CBytes([]byte) unsafe.Pointer
// C string to Go string
func C.GoString(*C.char) string
// C data with explicit length to Go string
func C.GoStringN(*C.char, C.int) string
// C data with explicit length to Go []byte
func C.GoBytes(unsafe.Pointer, C.int) []byte
How to use it:
func go_handleData(data *C.uint8_t, length C.uint8_t) []byte {
return C.GoBytes(unsafe.Pointer(data), C.int(length))
}
// ...
goByteSlice := []byte {1, 2, 3}
goUnsafePointer := C.CBytes(goByteSlice)
cPointer := (*C.uint8_t)(goUnsafePointer)
// ...
func getPayload(packet *C.packet_t) []byte {
dataPtr := unsafe.Pointer(packet.data)
// Lets assume a 2 byte header before the payload.
payload := C.GoBytes(unsafe.Pointer(uintptr(dataPtr)+2), C.int(packet.dataLength-2))
return payload
}