Please refer below given to know more about spark MLib
I am using eclipse here, and you need to add below given dependency to your pom.xml
1.) POM.XML
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.predection.classification</groupId>
<artifactId>logisitcRegression</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>logisitcRegression</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
</project>
We are doing classification based on country, hours and our label is clicked.
package com.predection.classification.logisitcRegression;
import org.apache.spark.SparkConf;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.sql.RowFactory;
import static org.apache.spark.sql.types.DataTypes.*;
/**
* Classification problem using Logistic Regression Model
*
*/
public class App
{
public static void main( String[] args )
{
SparkConf sparkConf = new SparkConf().setAppName("JavaLogisticRegressionExample");
// Creating spark session
SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();
StructType schema = createStructType(new StructField[]{
createStructField("id", IntegerType, false),
createStructField("country", StringType, false),
createStructField("hour", IntegerType, false),
createStructField("clicked", DoubleType, false)
});
List<Row> data = Arrays.asList(
RowFactory.create(7, "US", 18, 1.0),
RowFactory.create(8, "CA", 12, 0.0),
RowFactory.create(9, "NZ", 15, 1.0),
RowFactory.create(10,"FR", 8, 0.0),
RowFactory.create(11, "IT", 16, 1.0),
RowFactory.create(12, "CH", 5, 0.0),
RowFactory.create(13, "AU", 20, 1.0)
);
Dataset<Row> dataset = sparkSession.createDataFrame(data, schema);
// Using stringindexer transformer to transform string into index
dataset = new StringIndexer().setInputCol("country").setOutputCol("countryIndex").fit(dataset).transform(dataset);
// creating feature vector using dependent variables countryIndex, hours are features and clicked is label
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[] {"countryIndex", "hour"})
.setOutputCol("features");
Dataset<Row> finalDS = assembler.transform(dataset);
// Split the data into training and test sets (30% held out for
// testing).
Dataset<Row>[] splits = finalDS.randomSplit(new double[] { 0.7, 0.3 });
Dataset<Row> trainingData = splits[0];
Dataset<Row> testData = splits[1];
trainingData.show();
testData.show();
// Building LogisticRegression Model
LogisticRegression lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8).setLabelCol("clicked");
// Fit the model
LogisticRegressionModel lrModel = lr.fit(trainingData);
// Transform the model, and predict class for test dataset
Dataset<Row> output = lrModel.transform(testData);
output.show();
}
}
3.) To run this application, first perform mvn-clean-package
on application project, it would create jar.
4.) Open spark root directory, and submit this job
bin/spark-submit --class com.predection.regression.App --master local[2] ./regression-0.0.1-SNAPSHOT.jar(path to the jar file)
5.) After submitting see it builds training data
6.) same way test data
7.) And here is the prediction result under the prediction column