MATLAB supports (and encourages) vectorized operations on vectors and matrices.
For example, suppose we have A
and B
, two n
-by-m
matrices and we want C
to be the element-wise product of the corresponding elements (i.e., C(i,j) = A(i,j)*B(i,j)
).
The un-vectorized way, using nested loops is as follows:
C = zeros(n,m);
for ii=1:n
for jj=1:m
C(ii,jj) = A(ii,jj)*B(ii,jj);
end
end
However, the vectorized way of doing this is by using the element-wise operator .*
:
C = A.*B;
times
.Given a random vector
v = rand(10,1);
if you want the sum of its elements, do NOT use a loop
s = 0;
for ii = 1:10
s = s + v(ii);
end
but use the vectorized capability of the sum()
function
s = sum(v);
Functions like sum()
, mean()
, prod()
and others, have the ability to operate directly along rows, columns or other dimensions.
For instance, given a random matrix
A = rand(10,10);
the average for each column is
m = mean(A,1);
the average for each row is
m = mean(A,2)
All the functions above work only on one dimension, but what if you want to sum the whole matrix? You could use:
s = sum(sum(A))
But what if have an ND-array? applying sum
on sum
on sum
... don't seem like the best option, instead use the :
operator to vectorize your array:
s = sum(A(:))
and this will result in one number which is the sum of all your array, doesn't matter how many dimensions it have.
Quite often, the reason why code has been written in a for
loop is to compute values from 'nearby' ones. The function bsxfun
can often be used to do this in a more succinct fashion.
For example, assume that you wish to perform a columnwise operation on the matrix B
, subtracting the mean of each column from it:
B = round(randn(5)*10); % Generate random data
A = zeros(size(B)); % Preallocate array
for col = 1:size(B,2); % Loop over columns
A(:,col) = B(:,col) - mean(B(:,col)); % Subtract means
end
This method is inefficient if B
is large, often due to MATLAB having to move the contents of variables around in memory. By using bsxfun
, one can do the same job neatly and easily in just a single line:
A = bsxfun(@minus, B, mean(B));
Here, @minus
is a function handle to the minus
operator (-
) and will be applied between elements of the two matrices B
and mean(B)
. Other function handles, even user-defined ones, are possible as well.
Next, suppose you want to add row vector v
to each row in matrix A
:
v = [1, 2, 3];
A = [8, 1, 6
3, 5, 7
4, 9, 2];
The naive approach is use a loop (do not do this):
B = zeros(3);
for row = 1:3
B(row,:) = A(row,:) + v;
end
Another option would be to replicate v
with repmat
(do not do this either):
>> v = repmat(v,3,1)
v =
1 2 3
1 2 3
1 2 3
>> B = A + v;
Instead use bsxfun
for this task:
>> B = bsxfun(@plus, A, v);
B =
9 3 9
4 7 10
5 11 5
bsxfun(@fun, A, B)
where @fun
is one of the supported functions and the two arrays A
and B
respect the two conditions below.
The name bsxfun
helps to understand how the function works and it stands for Binary FUNction with Singleton eXpansion. In other words, if:
1
) in either of the two arraysthen the array with the singleton dimension will be expanded to match the dimension of the other array. After the expansion, a binary function is applied elementwise on the two arrays.
For example, let A
be an M
-by-N
-byK
array and B
is an M
-by-N
array. Firstly, their first two dimensions have corresponding sizes. Secondly, A
has K
layers while B
has implicitly only 1
, hence it is a singleton. All conditions are met and B
will be replicated to match the 3rd dimension of A
.
In other languages, this is commonly referred to as broadcasting and happens automatically in Python (numpy) and Octave.
The function, @fun
, must be a binary function meaning it must take exactly two inputs.
Internally, bsxfun
does not replicate the array and executes an efficient loop.
MATLAB supports the use of logical masking in order to perform selection on a matrix without the use of for loops or if statements.
A logical mask is defined as a matrix composed of only 1
and 0
.
For example:
mask = [1 0 0; 0 1 0; 0 0 1];
is a logical matrix representing the identity matrix.
We can generate a logical mask using a predicate to query a matrix.
A = [1 2 3; 4 5 6; 7 8 9];
B = A > 4;
We first create a 3x3 matrix, A
, containing the numbers 1 through 9. We then query A
for values that are greater than 4 and store the result in a new matrix called B
.
B
is a logical matrix of the form:
B = [0 0 0
0 1 1
1 1 1]
Or 1
when the predicate A > 4
was true. And 0
when it was false.
We can use logical matrices to access elements of a matrix. If a logical matrix is used to select elements, indices where a 1
appear in the logical matrix will be selected in the matrix you are selecting from.
Using the same B
from above, we could do the following:
C = [0 0 0; 0 0 0; 0 0 0];
C(B) = 5;
This would select all of the elements of C
where B
has a 1
in that index. Those indices in C
are then set to 5
.
Our C
now looks like:
C = [0 0 0
0 5 5
5 5 5]
We can reduce complicated code blocks containing if
and for
by using logical masks.
Take the non-vectorized code:
A = [1 3 5; 7 9 11; 11 9 7];
for j = 1:length(A)
if A(j) > 5
A(j) = A(j) - 2;
end
end
This can be shortened using logical masking to the following code:
A = [1 3 5; 7 9 11; 11 9 7];
B = A > 5;
A(B) = A(B) - 2;
Or even shorter:
A = [1 3 5; 7 9 11; 11 9 7];
A(A > 5) = A(A > 5) - 2;
MATLAB R2016b featured a generalization of its scalar expansion1,2 mechanism, to also support certain element-wise operations between arrays of different sizes, as long as their dimension are compatible. The operators that support implicit expansion are1:
+
, -
, .*
, .^
, ./
, .\
.<
, <=
, >
, >=
, ==
, ~=
.&
, |
, xor
.bitand
, bitor
, bitxor
.max
, min
, mod
, rem
, hypot
, atan2
, atan2d
.The aforementioned binary operations are allowed between arrays, as long as they have "compatible sizes". Sizes are considered "compatible" when each dimension in one array is either exactly equal to the same dimension in the other array, or is equal to 1
. Note that trailing singleton (that is, of size 1
) dimensions are omitted by MATLAB, even though there's theoretically an infinite amount of them. In other words - dimensions that appear in one array and do not appear in the other, are implicitly fit for automatic expansion.
For example, in MATLAB versions before R2016b this would happen:
>> magic(3) + (1:3)
Error using +
Matrix dimensions must agree.
Whereas starting from R2016b the previous operation will succeed:
>> magic(3) + (1:3)
ans =
9 3 9
4 7 10
5 11 5
Description | 1st Array Size | 2nd Array Size | Result Size |
---|---|---|---|
Vector and scalar | [3x1] | [1x1] | [3x1] |
Row and column vectors | [1x3] | [2x1] | [2x3] |
Vector and 2D matrix | [1x3] | [5x3] | [5x3] |
N-D and K-D arrays | [1x3x3] | [5x3x1x4x2] | [5x3x3x4x2] |
Description | 1st Array Size | 2nd Array Size | Possible Workaround |
---|---|---|---|
Vectors where a dimension is a multiple of the same dimension in the other array. | [1x2] | [1x8] | transpose |
Arrays with dimensions that are multiples of each other. | [2x2] | [8x8] | repmat , reshape |
N-D arrays that have the right amount of singleton dimensions but they're in the wrong order (#1). | [2x3x4] | [2x4x3] | permute |
N-D arrays that have the right amount of singleton dimensions but they're in the wrong order (#2). | [2x3x4x5] | [5x2] | permute |
IMPORTANT:
Code relying on this convention is NOT backward-compatible with any older versions of MATLAB. Therefore, the explicit invocation of bsxfun
1,2 (which achieves the same effect) should be used if code needs to run on older MATLAB versions. If such a concern does not exist, MATLAB R2016 release notes encourage users to switch from bsxfun
:
Compared to using
bsxfun
, implicit expansion offers faster speed of execution, better memory usage, and improved readability of code.
Related reading:
bsxfun
vs. implicit array expansion.In many application it is necessary to compute the function of two or more arguments.
Traditionally, we use for
-loops. For example, if we need to calculate the f = exp(-x^2-y^2)
(do not use this if you need fast simulations):
% code1
x = -1.2:0.2:1.4;
y = -2:0.25:3;
for nx=1:lenght(x)
for ny=1:lenght(y)
f(nx,ny) = exp(-x(nx)^2-y(ny)^2);
end
end
But vectorized version is more elegant and faster:
% code2
[x,y] = ndgrid(-1.2:0.2:1.4, -2:0.25:3);
f = exp(-x.^2-y.^2);
than we can visualize it:
surf(x,y,f)
Note1 - Grids: Usually, the matrix storage is organized row-by-row. But in the MATLAB, it is the column-by-column storage as in FORTRAN. Thus, there are two simular functions ndgrid
and meshgrid
in MATLAB to implement the two aforementioned models. To visualise the function in the case of meshgrid
, we can use:
surf(y,x,f)
Note2 - Memory consumption: Let size of x
or y
is 1000. Thus, we need to store 1000*1000+2*1000 ~ 1e6
elements for non-vectorized code1.
But we need 3*(1000*1000) = 3e6
elements in the case of vectorized code2.
In the 3D case (let z
has the same size asx
or y
), memory consumption increases dramatically: 4*(1000*1000*1000)
(~32GB for doubles) in the case of the vectorized code2 vs ~1000*1000*1000
(just ~8GB) in the case of code1. Thus, we have to choose either the memory or speed.