The Canny algorithm is a more recent edge detector designed as a signal processing problem. In OpenCV, it outputs a binary image marking the detected edges.
Python:
import cv2
import sys
# Load the image file
image = cv2.imread('image.png')
# Check if image was loaded improperly and exit if so
if image is None:
sys.exit('Failed to load image')
# Detect edges in the image. The parameters control the thresholds
edges = cv2.Canny(image, 100, 2500, apertureSize=5)
# Display the output in a window
cv2.imshow('output', edges)
cv2.waitKey()
Below is an usage of canny algorithm in c++. Note that the image is first converted to grayscale image, then Gaussian filter is used to reduce the noise in the image. Then Canny algorithm is used for edge detection.
// CannyTutorial.cpp : Defines the entry point for the console application.
// Environment: Visual studio 2015, Windows 10
// Assumptions: Opecv is installed configured in the visual studio project
// Opencv version: OpenCV 3.1
#include "stdafx.h"
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<string>
#include<iostream>
int main()
{
//Modified from source: https://github.com/MicrocontrollersAndMore/OpenCV_3_Windows_10_Installation_Tutorial
cv::Mat imgOriginal; // input image
cv::Mat imgGrayscale; // grayscale of input image
cv::Mat imgBlurred; // intermediate blured image
cv::Mat imgCanny; // Canny edge image
std::cout << "Please enter an image filename : ";
std::string img_addr;
std::cin >> img_addr;
std::cout << "Searching for " + img_addr << std::endl;
imgOriginal = cv::imread(img_addr); // open image
if (imgOriginal.empty()) { // if unable to open image
std::cout << "error: image not read from file\n\n"; // show error message on command line
return(0); // and exit program
}
cv::cvtColor(imgOriginal, imgGrayscale, CV_BGR2GRAY); // convert to grayscale
cv::GaussianBlur(imgGrayscale, // input image
imgBlurred, // output image
cv::Size(5, 5), // smoothing window width and height in pixels
1.5); // sigma value, determines how much the image will be blurred
cv::Canny(imgBlurred, // input image
imgCanny, // output image
100, // low threshold
200); // high threshold
// Declare windows
// Note: you can use CV_WINDOW_NORMAL which allows resizing the window
// or CV_WINDOW_AUTOSIZE for a fixed size window matching the resolution of the image
// CV_WINDOW_AUTOSIZE is the default
cv::namedWindow("imgOriginal", CV_WINDOW_AUTOSIZE);
cv::namedWindow("imgCanny", CV_WINDOW_AUTOSIZE);
//Show windows
cv::imshow("imgOriginal", imgOriginal);
cv::imshow("imgCanny", imgCanny);
cv::waitKey(0); // hold windows open until user presses a key
return 0;
}
import cv2
def canny_webcam():
"Live capture frames from webcam and show the canny edge image of the captured frames."
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read() # ret gets a boolean value. True if reading is successful (I think). frame is an
# uint8 numpy.ndarray
frame = cv2.GaussianBlur(frame, (7, 7), 1.41)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edge = cv2.Canny(frame, 25, 75)
cv2.imshow('Canny Edge', edge)
if cv2.waitKey(20) == ord('q'): # Introduce 20 milisecond delay. press q to exit.
break
canny_webcam()
"""
CannyTrackbar function allows for a better understanding of
the mechanisms behind Canny Edge detection algorithm and rapid
prototyping. The example includes basic use case.
2 of the trackbars allow for tuning of the Canny function and
the other 2 help with understanding how basic filtering affects it.
"""
import cv2
def empty_function(*args):
pass
def CannyTrackbar(img):
win_name = "CannyTrackbars"
cv2.namedWindow(win_name)
cv2.resizeWindow(win_name, 500,100)
cv2.createTrackbar("canny_th1", win_name, 0, 255, empty_function)
cv2.createTrackbar("canny_th2", win_name, 0, 255, empty_function)
cv2.createTrackbar("blur_size", win_name, 0, 255, empty_function)
cv2.createTrackbar("blur_amp", win_name, 0, 255, empty_function)
while True:
cth1_pos = cv2.getTrackbarPos("canny_th1", win_name)
cth2_pos = cv2.getTrackbarPos("canny_th2", win_name)
bsize_pos = cv2.getTrackbarPos("blur_size", win_name)
bamp_pos = cv2.getTrackbarPos("blur_amp", win_name)
img_blurred = cv2.GaussianBlur(img.copy(), (trackbar_pos3 * 2 + 1, trackbar_pos3 * 2 + 1), bamp_pos)
canny = cv2.Canny(img_blurred, cth1_pos, cth2_pos)
cv2.imshow(win_name, canny)
key = cv2.waitKey(1) & 0xFF
if key == ord("c"):
break
cv2.destroyAllWindows()
return canny
img = cv2.imread("image.jpg")
canny = CannyTrackbar(img)
cv2.imwrite("result.jpg", canny)
Parameter | Details |
---|---|
image | Input image |
edges | Output image |
threshold1 | First threshold for hysteresis procedure |
threshold2 | Second threshold for hysteresis procedure |
apertureSize | Aperture size for Sobel operator |
L2gradient | Flag indicating whether a more accurate algorithm for image gradient should be used |