// Generic types are declared using the <T> annotation
struct GenericType<T> {
pub item: T
}
enum QualityChecked<T> {
Excellent(T),
Good(T),
// enum fields can be generics too
Mediocre { product: T }
}
// explicit type declaration
let some_value: Option<u32> = Some(13);
// implicit type declaration
let some_other_value = Some(66);
Generics types can have more than one type parameters, eg. Result
is defined like this:
pub enum Result<T, E> {
Ok(T),
Err(E),
}
// Only accept T and U generic types that also implement Debug
fn print_objects<T: Debug, U: Debug>(a: T, b: U) {
println!("A: {:?} B: {:?}", a, b);
}
print_objects(13, 44);
// or annotated explicitly
print_objects::<usize, u16>(13, 44);
The bounds must cover all uses of the type. Addition is done by the std::ops::Add
trait, which has input and output parameters itself. where T: std::ops::Add<u32,Output=U>
states that it's possible to Add
T
to u32
, and this addition has to produce type U
.
fn try_add_one<T, U>(input_value: T) -> Result<U, String>
where T: std::ops::Add<u32,Output=U>
{
return Ok(input_value + 1);
}
Sized
bound is implied by default. ?Sized
bound allows unsized types as well.
Generic functions allow some or all of their arguments to be parameterised.
fn convert_values<T, U>(input_value: T) -> Result<U, String> {
// Try and convert the value.
// Actual code will require bounds on the types T, U to be able to do something with them.
}
If the compiler can't infer the type parameter then it can be supplied manually upon call:
let result: Result<u32, String> = convert_value::<f64, u32>(13.5);