~
. You may see this in very old examples.All values in Rust have exactly one owner. The owner is responsible for dropping that value when it goes out of scope, and is the only one who may move the ownership of the value. The owner of a value may give away references to it by letting other pieces of code borrow that value. At any given time, there may be any number of immutable references to a value:
let owned = String::from("hello");
// since we own the value, we may let other variables borrow it
let immutable_borrow1 = &owned;
// as all current borrows are immutable, we can allow many of them
let immutable_borrow2 = &owned;
// in fact, if we have an immutable reference, we are also free to
// duplicate that reference, since we maintain the invariant that
// there are only immutable references
let immutable_borrow3 = &*immutable_borrow2;
or a single mutable reference to it (ERROR
denotes a compile-time error):
// for us to borrow a value mutably, it must be mutable
let mut owned = String::from("hello");
// we can borrow owned mutably
let mutable_borrow = &mut owned;
// but note that we cannot borrow owned *again*
let mutable_borrow2 = &mut owned; // ERROR, already borrowed
// nor can we cannot borrow owned immutably
// since a mutable borrow is exclusive.
let immutable_borrow = &owned; // ERROR, already borrowed
If there are outstanding references (either mutable or immutable) to a value, that value cannot be moved (i.e., its ownership given away). We would have to make sure all references were dropped first to be allowed to move a value:
let foo = owned; // ERROR, outstanding references to owned
let owned = String::from("hello");
{
let borrow = &owned;
// ...
} // the scope ends the borrow
let foo = owned; // OK, owned and not borrowed
All values in Rust have a lifetime. A value's lifetime spans the segment of code from the value is introduced to where it is moved, or the end of the containing scope
{
let x = String::from("hello"); // +
// ... :
let y = String::from("hello"); // + |
// ... : :
foo(x) // x is moved | = x's lifetime
// ... :
} // = y's lifetime
Whenever you borrow a value, the resulting reference has a lifetime that is tied to the lifetime of the value being borrowed:
{
let x = String::from("hello");
let y = String::from("world");
// when we borrow y here, the lifetime of the reference
// stored in foo is equal to the lifetime of y
// (i.e., between let y = above, to the end of the scope below)
let foo = &y;
// similarly, this reference to x is bound to the lifetime
// of x --- bar cannot, for example, spawn a thread that uses
// the reference beyond where x is moved below.
bar(&x);
}
Most of the questions around ownership come up when writing functions. When you specify the types of a function's arguments, you may choose how that value is passed in. If you only need read-only access, you can take an immutable reference:
fn foo(x: &String) {
// foo is only authorized to read x's contents, and to create
// additional immutable references to it if it so desires.
let y = *x; // ERROR, cannot move when not owned
x.push_str("foo"); // ERROR, cannot mutate with immutable reference
println!("{}", x.len()); // reading OK
foo(x); // forwarding reference OK
}
If foo
needs to modify the argument, it should take an exclusive, mutable reference:
fn foo(x: &mut String) {
// foo is still not responsible for dropping x before returning,
// nor is it allowed to. however, foo may modify the String.
let x2 = *x; // ERROR, cannot move when not owned
x.push_str("foo"); // mutating OK
drop(*x); // ERROR, cannot drop value when not owned
println!("{}", x.len()); // reading OK
}
If you do not specify either &
or &mut
, you are saying that the function will take ownership of an argument. This means that foo
is now also responsible for dropping x
.
fn foo(x: String) {
// foo may do whatever it wishes with x, since no-one else has
// access to it. once the function terminates, x will be dropped,
// unless it is moved away when calling another function.
let mut x2 = x; // moving OK
x2.push_str("foo"); // mutating OK
let _ = &mut x2; // mutable borrow OK
let _ = &x2; // immutable borrow OK (note that &mut above is dropped)
println!("{}", x2.len()); // reading OK
drop(x2); // dropping OK
}
Some Rust types implement the Copy
trait. Types that are Copy
can be moved without owning the value in question. This is because the contents of the value can simply be copied byte-for-byte in memory to produce a new, identical value. Most primitives in Rust (bool
, usize
, f64
, etc.) are Copy
.
let x: isize = 42;
let xr = &x;
let y = *xr; // OK, because isize is Copy
// both x and y are owned here
Notably, Vec
and String
are not Copy
:
let x = Vec::new();
let xr = &x;
let y = *xr; // ERROR, cannot move out of borrowed content