Getting started with Microsoft SQL ServerOVER ClausePIVOT / UNPIVOTDatabase SnapshotsRetrieve information about the databaseThe STUFF FunctionFOR XML PATHCursorsJoinCommon Table ExpressionsMove and copy data around tablesDatesLimit Result SetRetrieve Information about your InstanceWith Ties Option VariablesJSON in Sql ServerWindow functionsPartitioningStored ProceduresGROUP BYGenerating a range of datesCOALESCESplit String function in Sql ServerINSERT INTOCREATE VIEWString FunctionsResource GovernorORDER BYWHILE loopSystem database - TempDbMigrationPrimary KeysMERGEFull-Text IndexingFOR JSONSELECT statementDBMAILIndexQueries with JSON dataStoring JSON in SQL tablesOPENJSONRanking FunctionsTriggerConverting data typesNULLsTransaction isolation levelsAdvanced optionsIF...ELSETRY/CATCHData TypesUser Defined Table TypesTable Valued ParametersIn-Memory OLTP (Hekaton)Temporal TablesInsertSequencesSCOPE_IDENTITY()ViewsUse of TEMP TableScheduled Task or JobIsolation levels and lockingSorting/ordering rowsPrivileges or PermissionsForeign KeysSQLCMDFile Groupcross applyBasic DDL Operations in MS SQL ServerComputed ColumnsUNIONSubqueriesLast Inserted IdentityCLUSTERED COLUMNSTOREParsenameInstalling SQL Server on WindowsAggregate FunctionsQuerying results by pageSchemasBackup and Restore DatabaseTransaction handlingNatively compiled modules (Hekaton)Database permissionsSpatial DataDynamic SQLPaginationQuery HintsModify JSON textRow-level securityDynamic data maskingExport data in txt file by using SQLCMDEncryptionManaging Azure SQL DatabaseCommon Language Runtime IntegrationDelimiting special characters and reserved wordsCASE StatementDBCCBULK ImportQuery StoreService brokerAnalyzing a QueryMicrosoft SQL Server Management Studio Shortcut KeysPermissions and SecurityPHANTOM readFilestreamDrop KeywordString Aggregate functions in SQL ServerSQL Server Evolution through different versions (2000 - 2016)SQL Server Management Studio (SSMS)Logical FunctionsDynamic SQL PivotAlias Names in Sql Serverbcp (bulk copy program) Utility

PIVOT / UNPIVOT

Other topics

Remarks:

Using PIVOT and UNPIVOT operators you transform a table by shifting the rows (column values) of a table to columns and vise-versa. As part of this transformation aggregation functions can be applied on the table values.

Simple Pivot - Static Columns

Using Item Sales Table from Example Database, let us calculate and show the total Quantity we sold of each Product.

This can be easily done with a group by, but lets assume we to 'rotate' our result table in a way that for each Product Id we have a column.

SELECT [100], [145]
  FROM (SELECT ItemId , Quantity
          FROM #ItemSalesTable
       ) AS pivotIntermediate
 PIVOT (   SUM(Quantity)
           FOR ItemId IN ([100], [145])
       ) AS pivotTable

Since our 'new' columns are numbers (in the source table), we need to square brackets []

This will give us an output like

100145
4518

Simple PIVOT & UNPIVOT (T-SQL)

Below is a simple example which shows average item's price of each item per weekday.

First, suppose we have a table which keeps daily records of all items' prices.

CREATE TABLE tbl_stock(item NVARCHAR(10), weekday NVARCHAR(10), price INT);

INSERT INTO tbl_stock VALUES 
('Item1', 'Mon', 110), ('Item2', 'Mon', 230), ('Item3', 'Mon', 150), 
('Item1', 'Tue', 115), ('Item2', 'Tue', 231), ('Item3', 'Tue', 162), 
('Item1', 'Wed', 110), ('Item2', 'Wed', 240), ('Item3', 'Wed', 162), 
('Item1', 'Thu', 109), ('Item2', 'Thu', 228), ('Item3', 'Thu', 145), 
('Item1', 'Fri', 120), ('Item2', 'Fri', 210), ('Item3', 'Fri', 125),
('Item1', 'Mon', 122), ('Item2', 'Mon', 225), ('Item3', 'Mon', 140),
('Item1', 'Tue', 110), ('Item2', 'Tue', 235), ('Item3', 'Tue', 154),
('Item1', 'Wed', 125), ('Item2', 'Wed', 220), ('Item3', 'Wed', 142);

The table should look like below:

+========+=========+=======+
|   item | weekday | price |
+========+=========+=======+
|  Item1 |    Mon  |   110 |
+--------+---------+-------+
|  Item2 |    Mon  |   230 |
+--------+---------+-------+
|  Item3 |    Mon  |   150 |
+--------+---------+-------+
|  Item1 |    Tue  |   115 |
+--------+---------+-------+
|  Item2 |    Tue  |   231 |
+--------+---------+-------+
|  Item3 |    Tue  |   162 |
+--------+---------+-------+
|          . . .           |
+--------+---------+-------+
|  Item2 |    Wed  |   220 |
+--------+---------+-------+
|  Item3 |    Wed  |   142 |
+--------+---------+-------+

In order to perform aggregation which is to find the average price per item for each week day, we are going to use the relational operator PIVOT to rotate the column weekday of table-valued expression into aggregated row values as below:

SELECT * FROM tbl_stock
PIVOT ( 
    AVG(price) FOR weekday IN ([Mon], [Tue], [Wed], [Thu], [Fri])
) pvt;

Result:

+--------+------+------+------+------+------+
|  item  |  Mon |  Tue |  Wed |  Thu |  Fri |
+--------+------+------+------+------+------+
|  Item1 |  116 |  112 |  117 |  109 |  120 |
|  Item2 |  227 |  233 |  230 |  228 |  210 |
|  Item3 |  145 |  158 |  152 |  145 |  125 |
+--------+------+------+------+------+------+

Lastly, in order to perform the reverse operation of PIVOT, we can use the relational operator UNPIVOT to rotate columns into rows as below:

SELECT * FROM tbl_stock
PIVOT ( 
    AVG(price) FOR weekday IN ([Mon], [Tue], [Wed], [Thu], [Fri])
) pvt
UNPIVOT ( 
    price FOR weekday IN ([Mon], [Tue], [Wed], [Thu], [Fri])
) unpvt;

Result:

+=======+========+=========+
|  item |  price | weekday |
+=======+========+=========+
| Item1 |    116 |     Mon |
+-------+--------+---------+
| Item1 |    112 |     Tue |
+-------+--------+---------+
| Item1 |    117 |     Wed |
+-------+--------+---------+
| Item1 |    109 |     Thu |
+-------+--------+---------+
| Item1 |    120 |     Fri |
+-------+--------+---------+
| Item2 |    227 |     Mon |
+-------+--------+---------+
| Item2 |    233 |     Tue |
+-------+--------+---------+
| Item2 |    230 |     Wed |
+-------+--------+---------+
| Item2 |    228 |     Thu |
+-------+--------+---------+
| Item2 |    210 |     Fri |
+-------+--------+---------+
| Item3 |    145 |     Mon |
+-------+--------+---------+
| Item3 |    158 |     Tue |
+-------+--------+---------+
| Item3 |    152 |     Wed |
+-------+--------+---------+
| Item3 |    145 |     Thu |
+-------+--------+---------+
| Item3 |    125 |     Fri |
+-------+--------+---------+

Dynamic PIVOT

One problem with the PIVOT query is that you have to specify all values inside the IN selection if you want to see them as columns. A quick way to circumvent this problem is to create a dynamic IN selection making your PIVOT dynamic.

For demonstration we will use a table Books in a Bookstore’s database. We assume that the table is quite de-normalised and has following columns

Table: Books
-----------------------------
BookId (Primary Key Column)
Name
Language
NumberOfPages
EditionNumber
YearOfPrint
YearBoughtIntoStore
ISBN
AuthorName
Price
NumberOfUnitsSold

Creation script for the table will be like:

CREATE TABLE [dbo].[BookList](
      [BookId] [int] NOT NULL,
      [Name] [nvarchar](100) NULL,
      [Language] [nvarchar](100) NULL,
      [NumberOfPages] [int] NULL,
      [EditionNumber] [nvarchar](10) NULL,
      [YearOfPrint] [int] NULL,
      [YearBoughtIntoStore] [int] NULL,
[NumberOfBooks] [int] NULL,
[ISBN] [nvarchar](30) NULL,
      [AuthorName] [nvarchar](200) NULL,
      [Price] [money] NULL,
      [NumberOfUnitsSold] [int] NULL,
 CONSTRAINT [PK_BookList] PRIMARY KEY CLUSTERED
(
      [BookId] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO

Now if we need to query on the database and figure out number of books in English, Russian, German, Hindi, Latin languages bought into the bookstore every year and present our output in a small report format, we can use PIVOT query like this

SELECT * FROM
  (
   SELECT YearBoughtIntoStore AS [Year Bought],[Language], NumberOfBooks
   FROM BookList
  ) sourceData 
 PIVOT
  (
  SUM(NumberOfBooks)
  FOR [Language] IN (English, Russian, German, Hindi, Latin)
  ) pivotrReport

Special case is when we do not have a full list of the languages, so we'll use dynamic SQL like below

DECLARE @query VARCHAR(4000)
DECLARE @languages VARCHAR(2000)
SELECT @languages =
        STUFF((SELECT DISTINCT '],['+LTRIM([Language])FROM [dbo].[BookList]
        ORDER BY '],['+LTRIM([Language]) FOR XML PATH('') ),1,2,'') + ']'
SET @query=
'SELECT * FROM
  (SELECT YearBoughtIntoStore AS [Year Bought],[Language],NumberOfBooks
   FROM BookList) sourceData
PIVOT(SUM(NumberOfBooks)FOR [Language] IN ('+ @languages +')) pivotrReport' EXECUTE(@query)

Syntax:

  • SELECT <non-pivoted column>,
    [first pivoted column] AS <column name>,
    [second pivoted column] AS <column name>,
    ...
    [last pivoted column] AS <column name>
    FROM
    (<SELECT query that produces the data>)
    AS <alias for the source query>
    PIVOT
    (
    <aggregation function>(<column being aggregated>)
    FOR
    [<column that contains the values that will become column headers>]
    IN ( [first pivoted column], [second pivoted column],
    ... [last pivoted column])
    ) AS <alias for the pivot table> <optional ORDER BY clause>;

Contributors

Topic Id: 591

Example Ids: 1932,8325,30541

This site is not affiliated with any of the contributors.