class (Functor t, Foldable t) => Traversable t where
{-# MINIMAL traverse | sequenceA #-}
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse f = sequenceA . fmap f
sequenceA :: Applicative f => t (f a) -> f (t a)
sequenceA = traverse id
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
mapM = traverse
sequence :: Monad m => t (m a) -> m (t a)
sequence = sequenceA
Traversable structures t are finitary containers of elements a which can be operated on with an effectful "visitor" operation. The visitor function f :: a -> f b performs a side-effect on each element of the structure and traverse composes those side-effects using Applicative. Another way of looking at it is that sequenceA says Traversable structures commute with Applicatives.
import Data.Traversable as Traversable
data MyType a = -- ...
instance Traversable MyType where
traverse = -- ...
Every Traversable structure can be made a Foldable Functor using the fmapDefault and foldMapDefault functions found in Data.Traversable.
instance Functor MyType where
fmap = Traversable.fmapDefault
instance Foldable MyType where
foldMap = Traversable.foldMapDefault
fmapDefault is defined by running traverse in the Identity applicative functor.
newtype Identity a = Identity { runIdentity :: a }
instance Applicative Identity where
pure = Identity
Identity f <*> Identity x = Identity (f x)
fmapDefault :: Traversable t => (a -> b) -> t a -> t b
fmapDefault f = runIdentity . traverse (Identity . f)
foldMapDefault is defined using the Const applicative functor, which ignores its parameter while accumulating a monoidal value.
newtype Const c a = Const { getConst :: c }
instance Monoid m => Applicative (Const m) where
pure _ = Const mempty
Const x <*> Const y = Const (x `mappend` y)
foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
foldMapDefault f = getConst . traverse (Const . f)
Implementations of traverse usually look like an implementation of fmap lifted into an Applicative context.
data Tree a = Leaf
| Node (Tree a) a (Tree a)
instance Traversable Tree where
traverse f Leaf = pure Leaf
traverse f (Node l x r) = Node <$> traverse f l <*> f x <*> traverse f r
This implementation performs an in-order traversal of the tree.
ghci> let myTree = Node (Node Leaf 'a' Leaf) 'b' (Node Leaf 'c' Leaf)
-- +--'b'--+
-- | |
-- +-'a'-+ +-'c'-+
-- | | | |
-- * * * *
ghci> traverse print myTree
'a'
'b'
'c'
The DeriveTraversable extension allows GHC to generate Traversable instances based on the structure of the type. We can vary the order of the machine-written traversal by adjusting the layout of the Node constructor.
data Inorder a = ILeaf
| INode (Inorder a) a (Inorder a) -- as before
deriving (Functor, Foldable, Traversable) -- also using DeriveFunctor and DeriveFoldable
data Preorder a = PrLeaf
| PrNode a (Preorder a) (Preorder a)
deriving (Functor, Foldable, Traversable)
data Postorder a = PoLeaf
| PoNode (Postorder a) (Postorder a) a
deriving (Functor, Foldable, Traversable)
-- injections from the earlier Tree type
inorder :: Tree a -> Inorder a
inorder Leaf = ILeaf
inorder (Node l x r) = INode (inorder l) x (inorder r)
preorder :: Tree a -> Preorder a
preorder Leaf = PrLeaf
preorder (Node l x r) = PrNode x (preorder l) (preorder r)
postorder :: Tree a -> Postorder a
postorder Leaf = PoLeaf
postorder (Node l x r) = PoNode (postorder l) (postorder r) x
ghci> traverse print (inorder myTree)
'a'
'b'
'c'
ghci> traverse print (preorder myTree)
'b'
'a'
'c'
ghci> traverse print (postorder myTree)
'a'
'c'
'b'
A traversal can be run in the opposite direction with the help of the Backwards applicative functor, which flips an existing applicative so that composed effects take place in reversed order.
newtype Backwards f a = Backwards { forwards :: f a }
instance Applicative f => Applicative (Backwards f) where
pure = Backwards . pure
Backwards ff <*> Backwards fx = Backwards ((\x f -> f x) <$> fx <*> ff)
Backwards can be put to use in a "reversed traverse". When the underlying applicative of a traverse call is flipped with Backwards, the resulting effect happens in reverse order.
newtype Reverse t a = Reverse { getReverse :: t a }
instance Traversable t => Traversable (Reverse t) where
traverse f = fmap Reverse . forwards . traverse (Backwards . f) . getReverse
ghci> traverse print (Reverse "abc")
'c'
'b'
'a'
The Reverse newtype is found under Data.Functor.Reverse.
The two mapAccum functions combine the operations of folding and mapping.
-- A Traversable structure
-- |
-- A seed value |
-- | |
-- |-| |---|
mapAccumL, mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
-- |------------------| |--------|
-- | |
-- A folding function which produces a new mapped |
-- element 'c' and a new accumulator value 'a' |
-- |
-- Final accumulator value
-- and mapped structure
These functions generalise fmap in that they allow the mapped values to depend on what has happened earlier in the fold. They generalise foldl/foldr in that they map the structure in place as well as reducing it to a value.
For example, tails can be implemented using mapAccumR and its sister inits can be implemented using mapAccumL.
tails, inits :: [a] -> [[a]]
tails = uncurry (:) . mapAccumR (\xs x -> (x:xs, xs)) []
inits = uncurry snoc . mapAccumL (\xs x -> (x `snoc` xs, xs)) []
where snoc x xs = xs ++ [x]
ghci> tails "abc"
["abc", "bc", "c", ""]
ghci> inits "abc"
["", "a", "ab", "abc"]
mapAccumL is implemented by traversing in the State applicative functor.
{-# LANGUAGE DeriveFunctor #-}
newtype State s a = State { runState :: s -> (s, a) } deriving Functor
instance Applicative (State s) where
pure x = State $ \s -> (s, x)
State ff <*> State fx = State $ \s -> let (t, f) = ff s
(u, x) = fx t
in (u, f x)
mapAccumL f z t = runState (traverse (State . flip f) t) z
mapAccumR works by running mapAccumL in reverse.
mapAccumR f z = fmap getReverse . mapAccumL f z . Reverse
If a type t is Traversable then values of t a can be split into two pieces: their "shape" and their "contents":
data Traversed t a = Traversed { shape :: t (), contents :: [a] }
where the "contents" are the same as what you'd "visit" using a Foldable instance.
Going one direction, from t a to Traversed t a doesn't require anything but Functor and Foldable
break :: (Functor t, Foldable t) => t a -> Traversed t a
break ta = Traversed (fmap (const ()) ta) (toList ta)
but going back uses the traverse function crucially
import Control.Monad.State
-- invariant: state is non-empty
pop :: State [a] a
pop = state $ \(a:as) -> (a, as)
recombine :: Traversable t => Traversed t a -> t a
recombine (Traversed s c) = evalState (traverse (const pop) s) c
The Traversable laws require that break . recombine and recombine . break are both identity. Notably, this means that there are exactly the right number elements in contents to fill shape completely with no left-overs.
Traversed t is Traversable itself. The implementation of traverse works by visiting the elements using the list's instance of Traversable and then reattaching the inert shape to the result.
instance Traversable (Traversed t) where
traverse f (Traversed s c) = fmap (Traversed s) (traverse f c)
Noting that zip transposes a tuple of lists into a list of tuples,
ghci> uncurry zip ([1,2],[3,4])
[(1,3), (2,4)]
and the similarity between the types of transpose and sequenceA,
-- transpose exchanges the inner list with the outer list
-- +---+-->--+-+
-- | | | |
transpose :: [[a]] -> [[a]]
-- | | | |
-- +-+-->--+---+
-- sequenceA exchanges the inner Applicative with the outer Traversable
-- +------>------+
-- | |
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
-- | |
-- +--->---+
the idea is to use []'s Traversable and Applicative structure to deploy sequenceA as a sort of n-ary zip, zipping together all the inner lists together pointwise.
[]'s default "prioritised choice" Applicative instance is not appropriate for our use - we need a "zippy" Applicative. For this we use the ZipList newtype, found in Control.Applicative.
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
pure x = ZipList (repeat x)
ZipList fs <*> ZipList xs = ZipList (zipWith ($) fs xs)
Now we get transpose for free, by traversing in the ZipList Applicative.
transpose :: [[a]] -> [[a]]
transpose = getZipList . traverse ZipList
ghci> let myMatrix = [[1,2,3],[4,5,6],[7,8,9]]
ghci> transpose myMatrix
[[1,4,7],[2,5,8],[3,6,9]]