Bytecode is the set of instructions used by the JVM. To illustrate this let's take this Hello World program.
public static void main(String[] args){
System.out.println("Hello World");
}
This is what it turns into when compiled into bytecode.
public static main([Ljava/lang/String; args)V
getstatic java/lang/System out Ljava/io/PrintStream;
ldc "Hello World"
invokevirtual java/io/PrintStream print(Ljava/lang/String;)V
getstatic - Retreives the value of a static field of a class. In this case, the PrintStream "Out" of System.
ldc - Push a constant onto the stack. In this case, the String "Hello World"
invokevirtual - Invokes a method on a loaded reference on the stack and puts the result on the stack. Parameters of the method are also taken from the stack.
There are 255 opcodes, but not all of them are implemented yet. A table with all of the current opcodes can be found here: Java bytecode instruction listings.
There's multiple ways to write and edit bytecode. You can use a compiler, use a library, or use a program.
For writing:
For editing:
There's probably a specific documentation page specificially for bytecode. This page focuses on the modification of bytecode using different libraries and tools.
Firstly the classes from the jar need to be loaded. We'll use three methods for this process:
Map<String, ClassNode> loadClasses(File jarFile) throws IOException {
Map<String, ClassNode> classes = new HashMap<String, ClassNode>();
JarFile jar = new JarFile(jarFile);
Stream<JarEntry> str = jar.stream();
str.forEach(z -> readJar(jar, z, classes));
jar.close();
return classes;
}
Map<String, ClassNode> readJar(JarFile jar, JarEntry entry, Map<String, ClassNode> classes) {
String name = entry.getName();
try (InputStream jis = jar.getInputStream(entry)){
if (name.endsWith(".class")) {
byte[] bytes = IOUtils.toByteArray(jis);
String cafebabe = String.format("%02X%02X%02X%02X", bytes[0], bytes[1], bytes[2], bytes[3]);
if (!cafebabe.toLowerCase().equals("cafebabe")) {
// This class doesn't have a valid magic
return classes;
}
try {
ClassNode cn = getNode(bytes);
classes.put(cn.name, cn);
} catch (Exception e) {
e.printStackTrace();
}
}
} catch (IOException e) {
e.printStackTrace();
}
return classes;
}
ClassNode getNode(byte[] bytes) {
ClassReader cr = new ClassReader(bytes);
ClassNode cn = new ClassNode();
try {
cr.accept(cn, ClassReader.EXPAND_FRAMES);
} catch (Exception e) {
e.printStackTrace();
}
cr = null;
return cn;
}
With these methods loading and changing a jar file becomes a simple matter of changing ClassNodes in a map. In this example we will replace all Strings in the jar with capitalized ones using the Tree API.
File jarFile = new File("sample.jar");
Map<String, ClassNode> nodes = loadClasses(jarFile);
// Iterate ClassNodes
for (ClassNode cn : nodes.values()){
// Iterate methods in class
for (MethodNode mn : cn.methods){
// Iterate instructions in method
for (AbstractInsnNode ain : mn.instructions.toArray()){
// If the instruction is loading a constant value
if (ain.getOpcode() == Opcodes.LDC){
// Cast current instruction to Ldc
// If the constant is a string then capitalize it.
LdcInsnNode ldc = (LdcInsnNode) ain;
if (ldc.cst instanceof String){
ldc.cst = ldc.cst.toString().toUpperCase();
}
}
}
}
}
Now that all of the ClassNode's strings have been modified we need to save the changes. In order to save the changes and have a working output a few things have to be done:
From the last portion above, we'll create three methods.
Usage:
Map<String, byte[]> out = process(nodes, new HashMap<String, MappedClass>());
out.putAll(loadNonClassEntries(jarFile));
saveAsJar(out, "sample-edit.jar");
The methods used:
static Map<String, byte[]> processNodes(Map<String, ClassNode> nodes, Map<String, MappedClass> mappings) {
Map<String, byte[]> out = new HashMap<String, byte[]>();
// Iterate nodes and add them to the map of <Class names , Class bytes>
// Using Compute_Frames ensures that stack-frames will be re-calculated automatically
for (ClassNode cn : nodes.values()) {
ClassWriter cw = new ClassWriter(ClassWriter.COMPUTE_FRAMES);
out.put(mappings.containsKey(cn.name) ? mappings.get(cn.name).getNewName() : cn.name, cw.toByteArray());
}
return out;
}
static Map<String, byte[]> loadNonClasses(File jarFile) throws IOException {
Map<String, byte[]> entries = new HashMap<String, byte[]>();
ZipInputStream jis = new ZipInputStream(new FileInputStream(jarFile));
ZipEntry entry;
// Iterate all entries
while ((entry = jis.getNextEntry()) != null) {
try {
String name = entry.getName();
if (!name.endsWith(".class") && !entry.isDirectory()) {
// Apache Commons - byte[] toByteArray(InputStream input)
//
// Add each entry to the map <Entry name , Entry bytes>
byte[] bytes = IOUtils.toByteArray(jis);
entries.put(name, bytes);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
jis.closeEntry();
}
}
jis.close();
return entries;
}
static void saveAsJar(Map<String, byte[]> outBytes, String fileName) {
try {
// Create jar output stream
JarOutputStream out = new JarOutputStream(new FileOutputStream(fileName));
// For each entry in the map, save the bytes
for (String entry : outBytes.keySet()) {
// Appent class names to class entries
String ext = entry.contains(".") ? "" : ".class";
out.putNextEntry(new ZipEntry(entry + ext));
out.write(outBytes.get(entry));
out.closeEntry();
}
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
That's it. All the changes will be saved to "sample-edit.jar".
/**
* Load a class by from a ClassNode
*
* @param cn
* ClassNode to load
* @return
*/
public static Class<?> load(ClassNode cn) {
ClassWriter cw = new ClassWriter(ClassWriter.COMPUTE_FRAMES);
return new ClassDefiner(ClassLoader.getSystemClassLoader()).get(cn.name.replace("/", "."), cw.toByteArray());
}
/**
* Classloader that loads a class from bytes.
*/
static class ClassDefiner extends ClassLoader {
public ClassDefiner(ClassLoader parent) {
super(parent);
}
public Class<?> get(String name, byte[] bytes) {
Class<?> c = defineClass(name, bytes, 0, bytes.length);
resolveClass(c);
return c;
}
}
public static void main(String[] args) throws Exception {
File jarFile = new File("Input.jar");
Map<String, ClassNode> nodes = JarUtils.loadClasses(jarFile);
Map<String, byte[]> out = JarUtils.loadNonClassEntries(jarFile);
Map<String, String> mappings = new HashMap<String, String>();
mappings.put("me/example/ExampleClass", "me/example/ExampleRenamed");
out.putAll(process(nodes, mappings));
JarUtils.saveAsJar(out, "Input-new.jar");
}
static Map<String, byte[]> process(Map<String, ClassNode> nodes, Map<String, String> mappings) {
Map<String, byte[]> out = new HashMap<String, byte[]>();
Remapper mapper = new SimpleRemapper(mappings);
for (ClassNode cn : nodes.values()) {
ClassWriter cw = new ClassWriter(ClassWriter.COMPUTE_FRAMES);
ClassVisitor remapper = new ClassRemapper(cw, mapper);
cn.accept(remapper);
out.put(mappings.containsKey(cn.name) ? mappings.get(cn.name) : cn.name, cw.toByteArray());
}
return out;
}
SimpleRemapper is an existing class in the ASM library. However it only allows for class names to be changed. If you wish to rename fields and methods you should create your own implemenation of the Remapper class.
Javassist is a bytecode instrumentation library that allows you to modify bytecode injecting Java code that will be converted to bytecode by Javassist and added to the instrumented class/method at runtime.
Lets write the first transformer that actually take an hypothetical class "com.my.to.be.instrumented.MyClass" and add to the instructions of each method a log call.
import java.lang.instrument.ClassFileTransformer;
import java.lang.instrument.IllegalClassFormatException;
import java.security.ProtectionDomain;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
public class DynamicTransformer implements ClassFileTransformer {
public byte[] transform(ClassLoader loader, String className, Class classBeingRedefined,
ProtectionDomain protectionDomain, byte[] classfileBuffer) throws IllegalClassFormatException {
byte[] byteCode = classfileBuffer;
// into the transformer will arrive every class loaded so we filter
// to match only what we need
if (className.equals("com/my/to/be/instrumented/MyClass")) {
try {
// retrive default Javassist class pool
ClassPool cp = ClassPool.getDefault();
// get from the class pool our class with this qualified name
CtClass cc = cp.get("com.my.to.be.instrumented.MyClass");
// get all the methods of the retrieved class
CtMethod[] methods = cc.getDeclaredMethods()
for(CtMethod meth : methods) {
// The instrumentation code to be returned and injected
final StringBuffer buffer = new StringBuffer();
String name = meth.getName();
// just print into the buffer a log for example
buffer.append("System.out.println(\"Method " + name + " executed\" );");
meth.insertBefore(buffer.toString())
}
// create the byteclode of the class
byteCode = cc.toBytecode();
// remove the CtClass from the ClassPool
cc.detach();
} catch (Exception ex) {
ex.printStackTrace();
}
}
return byteCode;
}
}
Now in order to use this transformer (so that our JVM will call the method transform on each class at load time) we need to add this instrumentor this with an agent:
import java.lang.instrument.Instrumentation;
public class EasyAgent {
public static void premain(String agentArgs, Instrumentation inst) {
// registers the transformer
inst.addTransformer(new DynamicTransformer());
}
}
Last step to start our first instrumentor experiment is to actually register this agent class to the JVM machine execution. The easiest way to actually do it is to register it with an option into the shell command:
java -javaagent:myAgent.jar MyJavaApplication
As we can see the agent/transformer project is added as a jar to the execution of any application named MyJavaApplication that is supposed to contain a class named "com.my.to.be.instrumented.MyClass" to actually execute our injected code.