Getting started with R LanguageData framesReading and writing tabular data in plain-text files (CSV, TSV, etc.)Pipe operators (%>% and others)Linear Models (Regression)data.tableboxplotFormulaSplit functionCreating vectorsFactorsPattern Matching and ReplacementRun-length encodingDate and TimeSpeeding up tough-to-vectorize codeggplot2ListsIntroduction to Geographical MapsBase PlottingSet operationstidyverseRcppRandom Numbers GeneratorString manipulation with stringi packageParallel processingSubsettingDebuggingInstalling packagesArima ModelsDistribution FunctionsShinyspatial analysissqldfCode profilingControl flow structuresColumn wise operationJSONRODBClubridateTime Series and Forecastingstrsplit functionWeb scraping and parsingGeneralized linear modelsReshaping data between long and wide formsRMarkdown and knitr presentationScope of variablesPerforming a Permutation TestxgboostR code vectorization best practicesMissing valuesHierarchical Linear ModelingClassesIntrospection*apply family of functions (functionals)Text miningANOVARaster and Image AnalysisSurvival analysisFault-tolerant/resilient codeReproducible RUpdating R and the package libraryFourier Series and Transformations.RprofiledplyrcaretExtracting and Listing Files in Compressed ArchivesProbability Distributions with RR in LaTeX with knitrWeb Crawling in RArithmetic OperatorsCreating reports with RMarkdownGPU-accelerated computingheatmap and heatmap.2Network analysis with the igraph packageFunctional programmingGet user inputroxygen2HashmapsSpark API (SparkR)Meta: Documentation GuidelinesI/O for foreign tables (Excel, SAS, SPSS, Stata)I/O for database tablesI/O for geographic data (shapefiles, etc.)I/O for raster imagesI/O for R's binary formatReading and writing stringsInput and outputRecyclingExpression: parse + evalRegular Expressions (regex)CombinatoricsPivot and unpivot with data.tableInspecting packagesSolving ODEs in RFeature Selection in R -- Removing Extraneous FeaturesBibliography in RMDWriting functions in RColor schemes for graphicsHierarchical clustering with hclustRandom Forest AlgorithmBar ChartCleaning dataRESTful R ServicesMachine learningVariablesThe Date classThe logical classThe character classNumeric classes and storage modesMatricesDate-time classes (POSIXct and POSIXlt)Using texreg to export models in a paper-ready wayPublishingImplement State Machine Pattern using S4 ClassReshape using tidyrModifying strings by substitutionNon-standard evaluation and standard evaluationRandomizationObject-Oriented Programming in RRegular Expression Syntax in RCoercionStandardize analyses by writing standalone R scriptsAnalyze tweets with RNatural language processingUsing pipe assignment in your own package %<>%: How to ?R Markdown Notebooks (from RStudio)Updating R versionAggregating data framesData acquisitionR memento by examplesCreating packages with devtools

Hashmaps

Other topics

Environments as hash maps

Note: in the subsequent passages, the terms hash map and hash table are used interchangeably and refer to the same concept, namely, a data structure providing efficient key lookup through use of an internal hash function.

Introduction

Although R does not provide a native hash table structure, similar functionality can be achieved by leveraging the fact that the environment object returned from new.env (by default) provides hashed key lookups. The following two statements are equivalent, as the hash parameter defaults to TRUE:

H <- new.env(hash = TRUE)
H <- new.env() 

Additionally, one may specify that the internal hash table is pre-allocated with a particular size via the size parameter, which has a default value of 29. Like all other R objects, environments manage their own memory and will grow in capacity as needed, so while it is not necessary to request a non-default value for size, there may be a slight performance advantage in doing so if the object will (eventually) contain a very large number of elements. It is worth noting that allocating extra space via size does not, in itself, result in an object with a larger memory footprint:

object.size(new.env())
# 56 bytes

object.size(new.env(size = 10e4))
# 56 bytes 

Insertion

Insertion of elements may be done using either of the [[<- or $<- methods provided for the environment class, but not by using "single bracket" assignment ([<-):

H <- new.env()

H[["key"]] <- rnorm(1)

key2 <- "xyz"
H[[key2]] <- data.frame(x = 1:3, y = letters[1:3])

H$another_key <- matrix(rbinom(9, 1, 0.5) > 0, nrow = 3)

H["error"] <- 42
#Error in H["error"] <- 42 : 
#  object of type 'environment' is not subsettable 

Like other facets of R, the first method (object[[key]] <- value) is generally preferred to the second (object$key <- value) because in the former case, a variable maybe be used instead of a literal value (e.g key2 in the example above).

As is generally the case with hash map implementations, the environment object will not store duplicate keys. Attempting to insert a key-value pair for an existing key will replace the previously stored value:

H[["key3"]] <- "original value"

H[["key3"]] <- "new value"

H[["key3"]]
#[1] "new value"

Key Lookup

Likewise, elements may be accessed with [[ or $, but not with [:

H[["key"]]
#[1] 1.630631
 
H[[key2]]   ## assuming key2 <- "xyz"
#   x y
# 1 1 a
# 2 2 b
# 3 3 c

H$another_key
#       [,1]  [,2]  [,3]
# [1,]  TRUE  TRUE  TRUE
# [2,] FALSE FALSE FALSE
# [3,]  TRUE  TRUE  TRUE

H[1]
#Error in H[1] : object of type 'environment' is not subsettable

Inspecting the Hash Map

Being just an ordinary environment, the hash map can be inspected by typical means:

names(H)
#[1] "another_key" "xyz"         "key"         "key3"       

ls(H)
#[1] "another_key" "key"         "key3"        "xyz"        
 
str(H)
#<environment: 0x7828228> 
 
ls.str(H)
# another_key :  logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ...
# key :  num 1.63
# key3 :  chr "new value"
# xyz : 'data.frame':    3 obs. of  2 variables:
#  $ x: int  1 2 3
#  $ y: chr  "a" "b" "c"

Elements can be removed using rm:

rm(list = c("key", "key3"), envir = H)

ls.str(H)
# another_key :  logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ...
# xyz : 'data.frame':    3 obs. of  2 variables:
#  $ x: int  1 2 3
#  $ y: chr  "a" "b" "c"

Flexibility

One of the major benefits of using environment objects as hash tables is their ability to store virtually any type of object as a value, even other environments:

H2 <- new.env()

H2[["a"]] <- LETTERS
H2[["b"]] <- as.list(x = 1:5, y = matrix(rnorm(10), 2))
H2[["c"]] <- head(mtcars, 3)
H2[["d"]] <- Sys.Date()
H2[["e"]] <- Sys.time()
H2[["f"]] <- (function() {
    H3 <- new.env()
    for (i in seq_along(names(H2))) {
        H3[[names(H2)[i]]] <- H2[[names(H2)[i]]]
    }
    H3
})()

ls.str(H2)
# a :  chr [1:26] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" ...
# b : List of 5
#  $ : int 1
#  $ : int 2
#  $ : int 3
#  $ : int 4
#  $ : int 5
# c : 'data.frame':    3 obs. of  11 variables:
#  $ mpg : num  21 21 22.8
#  $ cyl : num  6 6 4
#  $ disp: num  160 160 108
#  $ hp  : num  110 110 93
#  $ drat: num  3.9 3.9 3.85
#  $ wt  : num  2.62 2.88 2.32
#  $ qsec: num  16.5 17 18.6
#  $ vs  : num  0 0 1
#  $ am  : num  1 1 1
#  $ gear: num  4 4 4
#  $ carb: num  4 4 1
# d :  Date[1:1], format: "2016-08-03"
# e :  POSIXct[1:1], format: "2016-08-03 19:25:14"
# f : <environment: 0x91a7cb8> 

ls.str(H2$f)
# a :  chr [1:26] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" ...
# b : List of 5
#  $ : int 1
#  $ : int 2
#  $ : int 3
#  $ : int 4
#  $ : int 5
# c : 'data.frame':    3 obs. of  11 variables:
#  $ mpg : num  21 21 22.8
#  $ cyl : num  6 6 4
#  $ disp: num  160 160 108
#  $ hp  : num  110 110 93
#  $ drat: num  3.9 3.9 3.85
#  $ wt  : num  2.62 2.88 2.32
#  $ qsec: num  16.5 17 18.6
#  $ vs  : num  0 0 1
#  $ am  : num  1 1 1
#  $ gear: num  4 4 4
#  $ carb: num  4 4 1
# d :  Date[1:1], format: "2016-08-03"
# e :  POSIXct[1:1], format: "2016-08-03 19:25:14"

Limitations

One of the major limitations of using environment objects as hash maps is that, unlike many aspects of R, vectorization is not supported for element lookup / insertion:

names(H2)
#[1] "a" "b" "c" "d" "e" "f"

H2[[c("a", "b")]]
#Error in H2[[c("a", "b")]] : 
#  wrong arguments for subsetting an environment
 
Keys <- c("a", "b")
H2[[Keys]]
#Error in H2[[Keys]] : wrong arguments for subsetting an environment

Depending on the nature of the data being stored in the object, it may be possible to use vapply or list2env for assigning many elements at once:

E1 <- new.env()
invisible({
    vapply(letters, function(x) {
        E1[[x]] <- rnorm(1)
        logical(0)
    }, FUN.VALUE = logical(0))
})

all.equal(sort(names(E1)), letters)
#[1] TRUE

Keys <- letters
E2 <- list2env(
    setNames(
        as.list(rnorm(26)),
        nm = Keys), 
    envir = NULL,
    hash = TRUE
)

all.equal(sort(names(E2)), letters)
#[1] TRUE

Neither of the above are particularly concise, but may be preferable to using a for loop, etc. when the number of key-value pairs is large.

package:hash

The hash package offers a hash structure in R. However, it terms of timing for both inserts and reads it compares unfavorably to using environments as a hash. This documentation simply acknowledges its existence and provides sample timing code below for the above stated reasons. There is no identified case where hash is an appropriate solution in R code today.

Consider:

# Generic unique string generator
unique_strings <- function(n){
    string_i <- 1
    string_len <- 1
    ans <- character(n)
    chars <- c(letters,LETTERS)
    new_strings <- function(len,pfx){
    for(i in 1:length(chars)){
        if (len == 1){
        ans[string_i] <<- paste(pfx,chars[i],sep='')
        string_i <<- string_i + 1
        } else {
        new_strings(len-1,pfx=paste(pfx,chars[i],sep=''))
        }
        if (string_i > n) return ()
    }
    }
    while(string_i <= n){
    new_strings(string_len,'')
    string_len <- string_len + 1
    }
    sample(ans)
}

# Generate timings using an enviornment
timingsEnv <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){
    strings <- unique_strings(i)
    ht1 <- new.env(hash=TRUE)
    lapply(strings, function(s){ ht1[[s]] <<- 0L})
    data.frame(
    size=c(i,i),
    seconds=c(
        system.time(for (j in 1:i) ht1[[strings[j]]]==0L)[3]),
    type = c('1_hashedEnv')
    )
})

timingsHash <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){
    strings <- unique_strings(i)
    ht <- hash::hash()
    lapply(strings, function(s) ht[[s]] <<- 0L)
    data.frame(
    size=c(i,i),
    seconds=c(
        system.time(for (j in 1:i) ht[[strings[j]]]==0L)[3]),
    type = c('3_stringHash')
    )
})

package:listenv

Although package:listenv implements a list-like interface to environments, its performance relative to environments for hash-like purposes is poor on hash retrieval. However, if the indexes are numeric, it can be quite fast on retrieval. However, they have other advantages, e.g. compatibility with package:future. Covering this package for that purpose goes beyond the scope of the current topic. However, the timing code provided here can be used in conjunction with the example for package:hash for write timings.

timingsListEnv <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){
    strings <- unique_strings(i)
    le <- listenv::listenv()
    lapply(strings, function(s) le[[s]] <<- 0L)
    data.frame(
    size=c(i,i),
    seconds=c(
        system.time(for (k in 1:i) le[[k]]==0L)[3]),
    type = c('2_numericListEnv')
    )
})

Contributors

Topic Id: 5179

Example Ids: 18339,18771,18772

This site is not affiliated with any of the contributors.