Getting started with R LanguageData framesReading and writing tabular data in plain-text files (CSV, TSV, etc.)Pipe operators (%>% and others)Linear Models (Regression)data.tableboxplotFormulaSplit functionCreating vectorsFactorsPattern Matching and ReplacementRun-length encodingDate and TimeSpeeding up tough-to-vectorize codeggplot2ListsIntroduction to Geographical MapsBase PlottingSet operationstidyverseRcppRandom Numbers GeneratorString manipulation with stringi packageParallel processingSubsettingDebuggingInstalling packagesArima ModelsDistribution FunctionsShinyspatial analysissqldfCode profilingControl flow structuresColumn wise operationJSONRODBClubridateTime Series and Forecastingstrsplit functionWeb scraping and parsingGeneralized linear modelsReshaping data between long and wide formsRMarkdown and knitr presentationScope of variablesPerforming a Permutation TestxgboostR code vectorization best practicesMissing valuesHierarchical Linear ModelingClassesIntrospection*apply family of functions (functionals)Text miningANOVARaster and Image AnalysisSurvival analysisFault-tolerant/resilient codeReproducible RUpdating R and the package libraryFourier Series and Transformations.RprofiledplyrcaretExtracting and Listing Files in Compressed ArchivesProbability Distributions with RR in LaTeX with knitrWeb Crawling in RArithmetic OperatorsCreating reports with RMarkdownGPU-accelerated computingheatmap and heatmap.2Network analysis with the igraph packageFunctional programmingGet user inputroxygen2HashmapsSpark API (SparkR)Meta: Documentation GuidelinesI/O for foreign tables (Excel, SAS, SPSS, Stata)I/O for database tablesI/O for geographic data (shapefiles, etc.)I/O for raster imagesI/O for R's binary formatReading and writing stringsInput and outputRecyclingExpression: parse + evalRegular Expressions (regex)CombinatoricsPivot and unpivot with data.tableInspecting packagesSolving ODEs in RFeature Selection in R -- Removing Extraneous FeaturesBibliography in RMDWriting functions in RColor schemes for graphicsHierarchical clustering with hclustRandom Forest AlgorithmBar ChartCleaning dataRESTful R ServicesMachine learningVariablesThe Date classThe logical classThe character classNumeric classes and storage modesMatricesDate-time classes (POSIXct and POSIXlt)Using texreg to export models in a paper-ready wayPublishingImplement State Machine Pattern using S4 ClassReshape using tidyrModifying strings by substitutionNon-standard evaluation and standard evaluationRandomizationObject-Oriented Programming in RRegular Expression Syntax in RCoercionStandardize analyses by writing standalone R scriptsAnalyze tweets with RNatural language processingUsing pipe assignment in your own package %<>%: How to ?R Markdown Notebooks (from RStudio)Updating R versionAggregating data framesData acquisitionR memento by examplesCreating packages with devtools

Rcpp

Other topics

Inline Code Compile

Rcpp features two functions that enable code compilation inline and exportation directly into R: cppFunction() and evalCpp(). A third function called sourceCpp() exists to read in C++ code in a separate file though can be used akin to cppFunction().

Below is an example of compiling a C++ function within R. Note the use of "" to surround the source.

# Note - This is R code.
# cppFunction in Rcpp allows for rapid testing.
require(Rcpp)

# Creates a function that multiples each element in a vector
# Returns the modified vector.
cppFunction("
NumericVector exfun(NumericVector x, int i){
x = x*i;
return x;
}")

# Calling function in R
exfun(1:5, 3)

To quickly understand a C++ expression use:

# Use evalCpp to evaluate C++ expressions
evalCpp("std::numeric_limits<double>::max()")
## [1] 1.797693e+308

Rcpp Attributes

Rcpp Attributes makes the process of working with R and C++ straightforward. The form of attributes take:

// [[Rcpp::attribute]]

The use of attributes is typically associated with:

// [[Rcpp::export]]

that is placed directly above a declared function header when reading in a C++ file via sourceCpp().

Below is an example of an external C++ file that uses attributes.

// Add code below into C++ file Rcpp_example.cpp

#include <Rcpp.h>
using namespace Rcpp;

// Place the export tag right above function declaration.
// [[Rcpp::export]]
double muRcpp(NumericVector x){

    int n = x.size(); // Size of vector
    double sum = 0; // Sum value

    // For loop, note cpp index shift to 0
    for(int i = 0; i < n; i++){
        // Shorthand for sum = sum + x[i]
        sum += x[i];
    }

    return sum/n; // Obtain and return the Mean
}

// Place dependent functions above call or
// declare the function definition with:
double muRcpp(NumericVector x);

// [[Rcpp::export]]
double varRcpp(NumericVector x, bool bias = true){

    // Calculate the mean using C++ function
    double mean = muRcpp(x);
    double sum = 0;

    int n = x.size();

    for(int i = 0; i < n; i++){
        sum += pow(x[i] - mean, 2.0); // Square
    }

    return sum/(n-bias); // Return variance
}

To use this external C++ file within R, we do the following:

require(Rcpp)

# Compile File
sourceCpp("path/to/file/Rcpp_example.cpp")

# Make some sample data
x = 1:5

all.equal(muRcpp(x), mean(x))
## TRUE

all.equal(varRcpp(x), var(x))
## TRUE

Extending Rcpp with Plugins

Within C++, one can set different compilation flags using:

 // [[Rcpp::plugins(name)]]

List of the built-in plugins:

// built-in C++11 plugin
// [[Rcpp::plugins(cpp11)]]

// built-in C++11 plugin for older g++ compiler
// [[Rcpp::plugins(cpp0x)]]

// built-in C++14 plugin for C++14 standard
// [[Rcpp::plugins(cpp14)]]

// built-in C++1y plugin for C++14 and C++17 standard under development
// [[Rcpp::plugins(cpp1y)]]

// built-in OpenMP++11 plugin
// [[Rcpp::plugins(openmp)]]

Specifying Additional Build Dependencies

To use additional packages within the Rcpp ecosystem, the correct header file may not be Rcpp.h but Rcpp<PACKAGE>.h (as e.g. for RcppArmadillo). It typically needs to be imported and then the dependency is stated within

// [[Rcpp::depends(Rcpp<PACKAGE>)]]

Examples:

// Use the RcppArmadillo package
// Requires different header file from Rcpp.h
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// Use the RcppEigen package
// Requires different header file from Rcpp.h
#include <RcppEigen.h>
// [[Rcpp::depends(RcppEigen)]]

Contributors

Topic Id: 1404

Example Ids: 4580,4581,4582,19372

This site is not affiliated with any of the contributors.