Getting started with R LanguageData framesReading and writing tabular data in plain-text files (CSV, TSV, etc.)Pipe operators (%>% and others)Linear Models (Regression)data.tableboxplotFormulaSplit functionCreating vectorsFactorsPattern Matching and ReplacementRun-length encodingDate and TimeSpeeding up tough-to-vectorize codeggplot2ListsIntroduction to Geographical MapsBase PlottingSet operationstidyverseRcppRandom Numbers GeneratorString manipulation with stringi packageParallel processingSubsettingDebuggingInstalling packagesArima ModelsDistribution FunctionsShinyspatial analysissqldfCode profilingControl flow structuresColumn wise operationJSONRODBClubridateTime Series and Forecastingstrsplit functionWeb scraping and parsingGeneralized linear modelsReshaping data between long and wide formsRMarkdown and knitr presentationScope of variablesPerforming a Permutation TestxgboostR code vectorization best practicesMissing valuesHierarchical Linear ModelingClassesIntrospection*apply family of functions (functionals)Text miningANOVARaster and Image AnalysisSurvival analysisFault-tolerant/resilient codeReproducible RUpdating R and the package libraryFourier Series and Transformations.RprofiledplyrcaretExtracting and Listing Files in Compressed ArchivesProbability Distributions with RR in LaTeX with knitrWeb Crawling in RArithmetic OperatorsCreating reports with RMarkdownGPU-accelerated computingheatmap and heatmap.2Network analysis with the igraph packageFunctional programmingGet user inputroxygen2HashmapsSpark API (SparkR)Meta: Documentation GuidelinesI/O for foreign tables (Excel, SAS, SPSS, Stata)I/O for database tablesI/O for geographic data (shapefiles, etc.)I/O for raster imagesI/O for R's binary formatReading and writing stringsInput and outputRecyclingExpression: parse + evalRegular Expressions (regex)CombinatoricsPivot and unpivot with data.tableInspecting packagesSolving ODEs in RFeature Selection in R -- Removing Extraneous FeaturesBibliography in RMDWriting functions in RColor schemes for graphicsHierarchical clustering with hclustRandom Forest AlgorithmBar ChartCleaning dataRESTful R ServicesMachine learningVariablesThe Date classThe logical classThe character classNumeric classes and storage modesMatricesDate-time classes (POSIXct and POSIXlt)Using texreg to export models in a paper-ready wayPublishingImplement State Machine Pattern using S4 ClassReshape using tidyrModifying strings by substitutionNon-standard evaluation and standard evaluationRandomizationObject-Oriented Programming in RRegular Expression Syntax in RCoercionStandardize analyses by writing standalone R scriptsAnalyze tweets with RNatural language processingUsing pipe assignment in your own package %<>%: How to ?R Markdown Notebooks (from RStudio)Updating R versionAggregating data framesData acquisitionR memento by examplesCreating packages with devtools

Hierarchical Linear Modeling

Other topics

basic model fitting

apologies: since I don't know of a channel for discussing/providing feedback on requests for improvement, I'm going to put my question here. Please feel free to point out a better place for this! @DataTx states that this is "completely unclear, incomplete, or has severe formatting problems". Since I don't see any big formatting problems (:-) ), a little bit more guidance about what's expected here for improving clarity or completeness, and why what's here is unsalvageable, would be useful.

The primary packages for fitting hierarchical (alternatively "mixed" or "multilevel") linear models in R are nlme (older) and lme4 (newer). These packages differ in many minor ways but should generally result in very similar fitted models.

library(nlme)
library(lme4)
m1.nlme <- lme(Reaction~Days,random=~Days|Subject,data=sleepstudy,method="REML")
m1.lme4 <- lmer(Reaction~Days+(Days|Subject),data=sleepstudy,REML=TRUE)
all.equal(fixef(m1.nlme),fixef(m1.lme4))
## [1] TRUE

Differences to consider:

  • formula syntax is slightly different
  • nlme is (still) somewhat better documented (e.g. Pinheiro and Bates 2000 Mixed-effects models in S-PLUS; however, see Bates et al. 2015 Journal of Statistical Software/vignette("lmer",package="lme4") for lme4)
  • lme4 is faster and allows easier fitting of crossed random effects
  • nlme provides p-values for linear mixed models out of the box, lme4 requires add-on packages such as lmerTest or afex
  • nlme allows modeling of heteroscedasticity or residual correlations (in space/time/phylogeny)

The unofficial GLMM FAQ provides more information, although it is focused on generalized linear mixed models (GLMMs).

Contributors

Topic Id: 3460

Example Ids: 11966

This site is not affiliated with any of the contributors.