Getting started with C++TemplatesMetaprogrammingIteratorsReturning several values from a functionstd::stringNamespacesFile I/OClasses/StructuresSmart PointersFunction Overloadingstd::vectorOperator OverloadingLambdasLoopsstd::mapThreadingValue CategoriesPreprocessorSFINAE (Substitution Failure Is Not An Error)The Rule of Three, Five, And ZeroRAII: Resource Acquisition Is InitializationExceptionsImplementation-defined behaviorSpecial Member FunctionsRandom number generationReferencesSortingRegular expressionsPolymorphismPerfect ForwardingVirtual Member FunctionsUndefined BehaviorValue and Reference SemanticsOverload resolutionMove SemanticsPointers to membersPimpl Idiomstd::function: To wrap any element that is callableconst keywordautostd::optionalCopy ElisionBit OperatorsFold ExpressionsUnionsUnnamed typesmutable keywordBit fieldsstd::arraySingleton Design PatternThe ISO C++ StandardUser-Defined LiteralsEnumerationType ErasureMemory managementBit ManipulationArraysPointersExplicit type conversionsRTTI: Run-Time Type InformationStandard Library AlgorithmsFriend keywordExpression templatesScopesAtomic Typesstatic_assertoperator precedenceconstexprDate and time using <chrono> headerTrailing return typeFunction Template OverloadingCommon compile/linker errors (GCC)Design pattern implementation in C++Optimization in C++Compiling and BuildingType Traitsstd::pairKeywordsOne Definition Rule (ODR)Unspecified behaviorFloating Point ArithmeticArgument Dependent Name Lookupstd::variantAttributesInternationalization in C++ProfilingReturn Type CovarianceNon-Static Member FunctionsRecursion in C++Callable Objectsstd::iomanipConstant class member functionsSide by Side Comparisons of classic C++ examples solved via C++ vs C++11 vs C++14 vs C++17The This PointerInline functionsCopying vs AssignmentClient server examplesHeader FilesConst Correctnessstd::atomicsData Structures in C++Refactoring TechniquesC++ StreamsParameter packsLiteralsFlow ControlType KeywordsBasic Type KeywordsVariable Declaration KeywordsIterationtype deductionstd::anyC++11 Memory ModelBuild SystemsConcurrency With OpenMPType Inferencestd::integer_sequenceResource Managementstd::set and std::multisetStorage class specifiersAlignmentInline variablesLinkage specificationsCuriously Recurring Template Pattern (CRTP)Using declarationTypedef and type aliasesLayout of object typesC incompatibilitiesstd::forward_listOptimizationSemaphoreThread synchronization structuresC++ Debugging and Debug-prevention Tools & TechniquesFutures and PromisesMore undefined behaviors in C++MutexesUnit Testing in C++Recursive MutexdecltypeUsing std::unordered_mapDigit separatorsC++ function "call by value" vs. "call by reference"Basic input/output in c++Stream manipulatorsC++ ContainersArithmitic Metaprogramming

Sorting

Other topics

Remarks:

The std::sort function family is found in the algorithm library.

Sorting and sequence containers

std::sort, found in the standard library header algorithm, is a standard library algorithm for sorting a range of values, defined by a pair of iterators. std::sort takes as the last parameter a functor used to compare two values; this is how it determines the order. Note that std::sort is not stable.

The comparison function must impose a Strict, Weak Ordering on the elements. A simple less-than (or greater-than) comparison will suffice.

A container with random-access iterators can be sorted using the std::sort algorithm:

C++11
#include <vector>
#include <algorithm>

std::vector<int> MyVector = {3, 1, 2}

//Default comparison of <
std::sort(MyVector.begin(), MyVector.end());

std::sort requires that its iterators are random access iterators. The sequence containers std::list and std::forward_list (requiring C++11) do not provide random access iterators, so they cannot be used with std::sort. However, they do have sort member functions which implement a sorting algorithm that works with their own iterator types.

C++11
#include <list>
#include <algorithm>

std::list<int> MyList = {3, 1, 2}

//Default comparison of <
//Whole list only.
MyList.sort();

Their member sort functions always sort the entire list, so they cannot sort a sub-range of elements. However, since list and forward_list have fast splicing operations, you could extract the elements to be sorted from the list, sort them, then stuff them back where they were quite efficiently like this:

void sort_sublist(std::list<int>& mylist, std::list<int>::const_iterator start, std::list<int>::const_iterator end) {
    //extract and sort half-open sub range denoted by start and end iterator 
    std::list<int> tmp;
    tmp.splice(tmp.begin(), list, start, end);
    tmp.sort();
    //re-insert range at the point we extracted it from
    list.splice(end, tmp);
}

Sorting sequence containers with specifed ordering

If the values in a container have certain operators already overloaded, std::sort can be used with specialized functors to sort in either ascending or descending order:

C++11
#include <vector>
#include <algorithm>
#include <functional>

std::vector<int> v = {5,1,2,4,3};

//sort in ascending order (1,2,3,4,5)
std::sort(v.begin(), v.end(), std::less<int>());

// Or just:
std::sort(v.begin(), v.end());

//sort in descending order (5,4,3,2,1)
std::sort(v.begin(), v.end(), std::greater<int>());

//Or just:
std::sort(v.rbegin(), v.rend());
C++14

In C++14, we don't need to provide the template argument for the comparison function objects and instead let the object deduce based on what it gets passed in:

std::sort(v.begin(), v.end(), std::less<>());     // ascending order
std::sort(v.begin(), v.end(), std::greater<>());  // descending order

Sorting sequence containers by overloaded less operator

If no ordering function is passed, std::sort will order the elements by calling operator< on pairs of elements, which must return a type contextually convertible to bool (or just bool). Basic types (integers, floats, pointers etc) have already build in comparison operators.

We can overload this operator to make the default sort call work on user-defined types.

// Include sequence containers
#include <vector>
#include <deque>
#include <list>

// Insert sorting algorithm
#include <algorithm>    

class Base {
 public:

    // Constructor that set variable to the value of v
    Base(int v): variable(v) {
    }
    
    // Use variable to provide total order operator less
    //`this` always represents the left-hand side of the compare.
    bool operator<(const Base &b) const { 
        return this->variable < b.variable;
    }
    
    int variable;
};

int main() {
    std::vector <Base> vector;
    std::deque <Base> deque;
    std::list <Base> list;
    
    // Create 2 elements to sort
    Base a(10);
    Base b(5);
    
    // Insert them into backs of containers
    vector.push_back(a);
    vector.push_back(b);
    
    deque.push_back(a);
    deque.push_back(b);
    
    list.push_back(a);
    list.push_back(b);
    
    // Now sort data using operator<(const Base &b) function
    std::sort(vector.begin(), vector.end());
    std::sort(deque.begin(), deque.end());
    // List must be sorted differently due to its design
    list.sort();

    return 0;
}

Sorting sequence containers using compare function

// Include sequence containers
#include <vector>
#include <deque>
#include <list>

// Insert sorting algorithm
#include <algorithm>

class Base {
 public:

    // Constructor that set variable to the value of v
    Base(int v): variable(v) {
    }
       
    int variable;
};

bool compare(const Base &a, const Base &b) {
    return a.variable < b.variable;
}

int main() {
    std::vector <Base> vector;
    std::deque <Base> deque;
    std::list <Base> list;
    
    // Create 2 elements to sort
    Base a(10);
    Base b(5);
    
    // Insert them into backs of containers
    vector.push_back(a);
    vector.push_back(b);
    
    deque.push_back(a);
    deque.push_back(b);
    
    list.push_back(a);
    list.push_back(b);
    
    // Now sort data using comparing function
    std::sort(vector.begin(), vector.end(), compare);
    std::sort(deque.begin(), deque.end(), compare);
    list.sort(compare);

    return 0;
}

Sorting sequence containers using lambda expressions (C++11)

C++11
// Include sequence containers
#include <vector>
#include <deque>
#include <list>
#include <array>
#include <forward_list>

// Include sorting algorithm
#include <algorithm>

class Base {
 public:

    // Constructor that set variable to the value of v
    Base(int v): variable(v) {
    }
    
    int variable;
};


int main() {
    // Create 2 elements to sort
    Base a(10);
    Base b(5);
    
    // We're using C++11, so let's use initializer lists to insert items.
    std::vector <Base> vector = {a, b};
    std::deque <Base> deque = {a, b};
    std::list <Base> list = {a, b};
    std::array <Base, 2> array = {a, b};
    std::forward_list<Base> flist = {a, b};
    
    // We can sort data using an inline lambda expression
    std::sort(std::begin(vector), std::end(vector),
      [](const Base &a, const Base &b) { return a.variable < b.variable;});

    // We can also pass a lambda object as the comparator
    // and reuse the lambda multiple times
    auto compare = [](const Base &a, const Base &b) {
                     return a.variable < b.variable;};
    std::sort(std::begin(deque), std::end(deque), compare);
    std::sort(std::begin(array), std::end(array), compare);
    list.sort(compare);
    flist.sort(compare);

    return 0;
}

sorting with std::map (ascending and descending)

This example sorts elements in ascending order of a key using a map. You can use any type, including class, instead of std::string, in the example below.

#include <iostream>
#include <utility>
#include <map>

int main()
{
    std::map<double, std::string> sorted_map;
    // Sort the names of the planets according to their size
    sorted_map.insert(std::make_pair(0.3829, "Mercury"));
    sorted_map.insert(std::make_pair(0.9499, "Venus"));
    sorted_map.insert(std::make_pair(1,      "Earth"));
    sorted_map.insert(std::make_pair(0.532,  "Mars"));
    sorted_map.insert(std::make_pair(10.97,  "Jupiter"));
    sorted_map.insert(std::make_pair(9.14,   "Saturn"));
    sorted_map.insert(std::make_pair(3.981,  "Uranus"));
    sorted_map.insert(std::make_pair(3.865,  "Neptune"));

    for (auto const& entry: sorted_map)
    {
        std::cout << entry.second << " (" << entry.first << " of Earth's radius)" << '\n';
    }
}

Output:

Mercury (0.3829 of Earth's radius)
Mars (0.532 of Earth's radius)
Venus (0.9499 of Earth's radius)
Earth (1 of Earth's radius)
Neptune (3.865 of Earth's radius)
Uranus (3.981 of Earth's radius)
Saturn (9.14 of Earth's radius)
Jupiter (10.97 of Earth's radius)

If entries with equal keys are possible, use multimap instead of map (like in the following example).

To sort elements in descending manner, declare the map with a proper comparison functor (std::greater<>):

#include <iostream>
#include <utility>
#include <map>

int main()
{
    std::multimap<int, std::string, std::greater<int>> sorted_map;
    // Sort the names of animals in descending order of the number of legs
    sorted_map.insert(std::make_pair(6,   "bug"));
    sorted_map.insert(std::make_pair(4,   "cat"));
    sorted_map.insert(std::make_pair(100, "centipede"));
    sorted_map.insert(std::make_pair(2,   "chicken"));
    sorted_map.insert(std::make_pair(0,   "fish"));
    sorted_map.insert(std::make_pair(4,   "horse"));
    sorted_map.insert(std::make_pair(8,   "spider"));

    for (auto const& entry: sorted_map)
    {
        std::cout << entry.second << " (has " << entry.first << " legs)" << '\n';
    }
}

Output

centipede (has 100 legs)
spider (has 8 legs)
bug (has 6 legs)
cat (has 4 legs)
horse (has 4 legs)
chicken (has 2 legs)
fish (has 0 legs)

Sorting built-in arrays

The sort algorithm sorts a sequence defined by two iterators. This is enough to sort a built-in (also known as c-style) array.

C++11
int arr1[] = {36, 24, 42, 60, 59};

// sort numbers in ascending order
sort(std::begin(arr1), std::end(arr1));

// sort numbers in descending order
sort(std::begin(arr1), std::end(arr1), std::greater<int>());

Prior to C++11, end of array had to be "calculated" using the size of the array:

C++11
// Use a hard-coded number for array size
sort(arr1, arr1 + 5);

// Alternatively, use an expression
const size_t arr1_size = sizeof(arr1) / sizeof(*arr1);
sort(arr1, arr1 + arr1_size);

Contributors

Topic Id: 1675

Example Ids: 6193,5847,5938,5939,5940,13316,14165

This site is not affiliated with any of the contributors.