#include <iostream>
#include <functional>
std::function<void(int , const std::string&)> myFuncObj;
void theFunc(int i, const std::string& s)
{
std::cout << s << ": " << i << std::endl;
}
int main(int argc, char *argv[])
{
myFuncObj = theFunc;
myFuncObj(10, "hello world");
}
Think about a situation where we need to callback a function with arguments.
std::function
used with std::bind
gives a very powerful design construct as shown below.
class A
{
public:
std::function<void(int, const std::string&)> m_CbFunc = nullptr;
void foo()
{
if (m_CbFunc)
{
m_CbFunc(100, "event fired");
}
}
};
class B
{
public:
B()
{
auto aFunc = std::bind(&B::eventHandler, this, std::placeholders::_1, std::placeholders::_2);
anObjA.m_CbFunc = aFunc;
}
void eventHandler(int i, const std::string& s)
{
std::cout << s << ": " << i << std::endl;
}
void DoSomethingOnA()
{
anObjA.foo();
}
A anObjA;
};
int main(int argc, char *argv[])
{
B anObjB;
anObjB.DoSomethingOnA();
}
#include <iostream>
#include <functional>
using std::placeholders::_1; // to be used in std::bind example
int stdf_foobar (int x, std::function<int(int)> moo)
{
return x + moo(x); // std::function moo called
}
int foo (int x) { return 2+x; }
int foo_2 (int x, int y) { return 9*x + y; }
int main()
{
int a = 2;
/* Function pointers */
std::cout << stdf_foobar(a, &foo) << std::endl; // 6 ( 2 + (2+2) )
// can also be: stdf_foobar(2, foo)
/* Lambda expressions */
/* An unnamed closure from a lambda expression can be
* stored in a std::function object:
*/
int capture_value = 3;
std::cout << stdf_foobar(a,
[capture_value](int param) -> int { return 7 + capture_value * param; })
<< std::endl;
// result: 15 == value + (7 * capture_value * value) == 2 + (7 + 3 * 2)
/* std::bind expressions */
/* The result of a std::bind expression can be passed.
* For example by binding parameters to a function pointer call:
*/
int b = stdf_foobar(a, std::bind(foo_2, _1, 3));
std::cout << b << std::endl;
// b == 23 == 2 + ( 9*2 + 3 )
int c = stdf_foobar(a, std::bind(foo_2, 5, _1));
std::cout << c << std::endl;
// c == 49 == 2 + ( 9*5 + 2 )
return 0;
}
std::function
can cause significant overhead. Because std::function
has [value semantics][1], it must copy or move the given callable into itself. But since it can take callables of an arbitrary type, it will frequently have to allocate memory dynamically to do this.
Some function
implementations have so-called "small object optimization", where small types (like function pointers, member pointers, or functors with very little state) will be stored directly in the function
object. But even this only works if the type is noexcept
move constructible. Furthermore, the C++ standard does not require that all implementations provide one.
Consider the following:
//Header file
using MyPredicate = std::function<bool(const MyValue &, const MyValue &)>;
void SortMyContainer(MyContainer &C, const MyPredicate &pred);
//Source file
void SortMyContainer(MyContainer &C, const MyPredicate &pred)
{
std::sort(C.begin(), C.end(), pred);
}
A template parameter would be the preferred solution for SortMyContainer
, but let us assume that this is not possible or desirable for whatever reason. SortMyContainer
does not need to store pred
beyond its own call. And yet, pred
may well allocate memory if the functor given to it is of some non-trivial size.
function
allocates memory because it needs something to copy/move into; function
takes ownership of the callable it is given. But SortMyContainer
does not need to own the callable; it's just referencing it. So using function
here is overkill; it may be efficient, but it may not.
There is no standard library function type that merely references a callable. So an alternate solution will have to be found, or you can choose to live with the overhead.
Also, function
has no effective means to control where the memory allocations for the object come from. Yes, it has constructors that take an allocator
, but [many implementations do not implement them correctly... or even at all][2].
The function
constructors that take an allocator
no longer are part of the type. Therefore, there is no way to manage the allocation.
Calling a function
is also slower than calling the contents directly. Since any function
instance could hold any callable, the call through a function
must be indirect. The overhead of calling function
is on the order of a virtual function call.
/*
* This example show some ways of using std::function to call
* a) C-like function
* b) class-member function
* c) operator()
* d) lambda function
*
* Function call can be made:
* a) with right arguments
* b) argumens with different order, types and count
*/
#include <iostream>
#include <functional>
#include <iostream>
#include <vector>
using std::cout;
using std::endl;
using namespace std::placeholders;
// simple function to be called
double foo_fn(int x, float y, double z)
{
double res = x + y + z;
std::cout << "foo_fn called with arguments: "
<< x << ", " << y << ", " << z
<< " result is : " << res
<< std::endl;
return res;
}
// structure with member function to call
struct foo_struct
{
// member function to call
double foo_fn(int x, float y, double z)
{
double res = x + y + z;
std::cout << "foo_struct::foo_fn called with arguments: "
<< x << ", " << y << ", " << z
<< " result is : " << res
<< std::endl;
return res;
}
// this member function has different signature - but it can be used too
// please not that argument order is changed too
double foo_fn_4(int x, double z, float y, long xx)
{
double res = x + y + z + xx;
std::cout << "foo_struct::foo_fn_4 called with arguments: "
<< x << ", " << z << ", " << y << ", " << xx
<< " result is : " << res
<< std::endl;
return res;
}
// overloaded operator() makes whole object to be callable
double operator()(int x, float y, double z)
{
double res = x + y + z;
std::cout << "foo_struct::operator() called with arguments: "
<< x << ", " << y << ", " << z
<< " result is : " << res
<< std::endl;
return res;
}
};
int main(void)
{
// typedefs
using function_type = std::function<double(int, float, double)>;
// foo_struct instance
foo_struct fs;
// here we will store all binded functions
std::vector<function_type> bindings;
// var #1 - you can use simple function
function_type var1 = foo_fn;
bindings.push_back(var1);
// var #2 - you can use member function
function_type var2 = std::bind(&foo_struct::foo_fn, fs, _1, _2, _3);
bindings.push_back(var2);
// var #3 - you can use member function with different signature
// foo_fn_4 has different count of arguments and types
function_type var3 = std::bind(&foo_struct::foo_fn_4, fs, _1, _3, _2, 0l);
bindings.push_back(var3);
// var #4 - you can use object with overloaded operator()
function_type var4 = fs;
bindings.push_back(var4);
// var #5 - you can use lambda function
function_type var5 = [](int x, float y, double z)
{
double res = x + y + z;
std::cout << "lambda called with arguments: "
<< x << ", " << y << ", " << z
<< " result is : " << res
<< std::endl;
return res;
};
bindings.push_back(var5);
std::cout << "Test stored functions with arguments: x = 1, y = 2, z = 3"
<< std::endl;
for (auto f : bindings)
f(1, 2, 3);
}
Output:
Test stored functions with arguments: x = 1, y = 2, z = 3
foo_fn called with arguments: 1, 2, 3 result is : 6
foo_struct::foo_fn called with arguments: 1, 2, 3 result is : 6
foo_struct::foo_fn_4 called with arguments: 1, 3, 2, 0 result is : 6
foo_struct::operator() called with arguments: 1, 2, 3 result is : 6
lambda called with arguments: 1, 2, 3 result is : 6
Some programs need so store arguments for future calling of some function.
This example shows how to call any function with arguments stored in std::tuple
#include <iostream>
#include <functional>
#include <tuple>
#include <iostream>
// simple function to be called
double foo_fn(int x, float y, double z)
{
double res = x + y + z;
std::cout << "foo_fn called. x = " << x << " y = " << y << " z = " << z
<< " res=" << res;
return res;
}
// helpers for tuple unrolling
template<int ...> struct seq {};
template<int N, int ...S> struct gens : gens<N-1, N-1, S...> {};
template<int ...S> struct gens<0, S...>{ typedef seq<S...> type; };
// invocation helper
template<typename FN, typename P, int ...S>
double call_fn_internal(const FN& fn, const P& params, const seq<S...>)
{
return fn(std::get<S>(params) ...);
}
// call function with arguments stored in std::tuple
template<typename Ret, typename ...Args>
Ret call_fn(const std::function<Ret(Args...)>& fn,
const std::tuple<Args...>& params)
{
return call_fn_internal(fn, params, typename gens<sizeof...(Args)>::type());
}
int main(void)
{
// arguments
std::tuple<int, float, double> t = std::make_tuple(1, 5, 10);
// function to call
std::function<double(int, float, double)> fn = foo_fn;
// invoke a function with stored arguments
call_fn(fn, t);
}
Output:
foo_fn called. x = 1 y = 5 z = 10 res=16