A std::tuple<T...>
can be used to pass multiple values around. For example, it could be used to store a sequence of parameters into some form of a queue. When processing such a tuple its elements need to be turned into function call arguments:
#include <array>
#include <iostream>
#include <string>
#include <tuple>
#include <utility>
// ----------------------------------------------------------------------------
// Example functions to be called:
void f(int i, std::string const& s) {
std::cout << "f(" << i << ", " << s << ")\n";
}
void f(int i, double d, std::string const& s) {
std::cout << "f(" << i << ", " << d << ", " << s << ")\n";
}
void f(char c, int i, double d, std::string const& s) {
std::cout << "f(" << c << ", " << i << ", " << d << ", " << s << ")\n";
}
void f(int i, int j, int k) {
std::cout << "f(" << i << ", " << j << ", " << k << ")\n";
}
// ----------------------------------------------------------------------------
// The actual function expanding the tuple:
template <typename Tuple, std::size_t... I>
void process(Tuple const& tuple, std::index_sequence<I...>) {
f(std::get<I>(tuple)...);
}
// The interface to call. Sadly, it needs to dispatch to another function
// to deduce the sequence of indices created from std::make_index_sequence<N>
template <typename Tuple>
void process(Tuple const& tuple) {
process(tuple, std::make_index_sequence<std::tuple_size<Tuple>::value>());
}
// ----------------------------------------------------------------------------
int main() {
process(std::make_tuple(1, 3.14, std::string("foo")));
process(std::make_tuple('a', 2, 2.71, std::string("bar")));
process(std::make_pair(3, std::string("pair")));
process(std::array<int, 3>{ 1, 2, 3 });
}
As long as a class supports std::get<I>(object)
and std::tuple_size<T>::value
it can be expanded with the above process()
function. The function itself is entirely independent of the number of arguments.
std::integer_sequence
itself is about holding a sequence of integers which can be turned into a parameter pack. Its primary value is the possibility to create "factory" class templates creating these sequences:
#include <iostream>
#include <initializer_list>
#include <utility>
template <typename T, T... I>
void print_sequence(std::integer_sequence<T, I...>) {
std::initializer_list<bool>{ bool(std::cout << I << ' ')... };
std::cout << '\n';
}
template <int Offset, typename T, T... I>
void print_offset_sequence(std::integer_sequence<T, I...>) {
print_sequence(std::integer_sequence<T, T(I + Offset)...>());
}
int main() {
// explicitly specify sequences:
print_sequence(std::integer_sequence<int, 1, 2, 3>());
print_sequence(std::integer_sequence<char, 'f', 'o', 'o'>());
// generate sequences:
print_sequence(std::make_index_sequence<10>());
print_sequence(std::make_integer_sequence<short, 10>());
print_offset_sequence<'A'>(std::make_integer_sequence<char, 26>());
}
The print_sequence()
function template uses an std::initializer_list<bool>
when expanding the integer sequence to guarantee the order of evaluation and not creating an unused [array] variable.
Expanding the parameter pack of indices in a comma expression with a value creates a copy of the value for each of the indices. Sadly, gcc
and clang
think the index has no effect and warn about it (gcc
can be silenced by casting the index to void
):
#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
#include <string>
#include <utility>
template <typename T, std::size_t... I>
std::array<T, sizeof...(I)> make_array(T const& value, std::index_sequence<I...>) {
return std::array<T, sizeof...(I)>{ (I, value)... };
}
template <int N, typename T>
std::array<T, N> make_array(T const& value) {
return make_array(value, std::make_index_sequence<N>());
}
int main() {
auto array = make_array<20>(std::string("value"));
std::copy(array.begin(), array.end(),
std::ostream_iterator<std::string>(std::cout, " "));
std::cout << "\n";
}