Getting started with C# LanguageVerbatim StringsOperatorsExtension MethodsCollection InitializersString InterpolationC# 6.0 FeaturesConstructors and FinalizersKeywordsGenericsReflectionInheritanceNull-Coalescing OperatorUsing StatementString Escape SequencesException HandlingNull-conditional OperatorsBuilt-in TypesLambda expressionsAsync-AwaitPropertiesThreadingUsing DirectiveMethodsYield KeywordEventsLINQ QueriesCommon String OperationsExpression TreesOverload ResolutionString.Formatnameof OperatorUnsafe Code in .NETInitializing PropertiesBindingList<T>ILGeneratorObject initializersXML Documentation CommentsPreprocessor directivesDynamic typeAnonymous typesStructsTuplesEnumAccess ModifiersTask Parallel LibraryAttributesGuidSingleton ImplementationDelegatesNullable typesGarbage Collector in .NetNetworkingArraysEquality OperatorLock StatementAction FiltersXmlDocument and the System.Xml namespaceDateTime MethodsBackgroundWorkerPolymorphismStatic ClassesIndexerIDisposable interfaceAliases of built-in typesImmutabilityXDocument and the System.Xml.Linq namespaceC# 7.0 FeaturesPerforming HTTP requestsGenerating Random Numbers in C#LoopingNamed ArgumentsDiagnosticsInterfacesIEnumerableNaming ConventionsAn overview of c# collectionsChecked and UncheckedRecursionFunctional ProgrammingLiteralsCastingNullReferenceExceptionFunc delegatesLINQ to XMLHash FunctionsHandling FormatException when converting string to other typesCryptography (System.Security.Cryptography)INotifyPropertyChanged interfaceValue type vs Reference typeC# 4.0 FeaturesIQueryable interfaceTask Parallel Library (TPL) Dataflow ConstructsStreamRuntime CompileConditional StatementsInteroperabilityOverflowEquals and GetHashCodeType ConversionParallel LINQ (PLINQ)String ManipulationString ConcatenatePartial class and methodsStopwatchesRegex ParsingC# ScriptC# 3.0 FeaturesAsync/await, Backgroundworker, Task and Thread ExamplesTimersFunction with multiple return valuesBinary SerializationMaking a variable thread safeIComparableCode ContractsIteratorsAssemblyInfo.cs ExamplesFile and Stream I/OCode Contracts and AssertionsCachingC# 5.0 FeaturesImplementing Flyweight Design PatternStringBuilderImplementing Decorator Design PatternAccessing DatabasesT4 Code GenerationMicrosoft.Exchange.WebServices.NET Compiler Platform (Roslyn)Data AnnotationUsing SQLite in C#System.Management.AutomationFileSystemWatcherSystem.DirectoryServices.Protocols.LdapConnectionNamed and Optional ArgumentsComments and regionsC# Authentication handlerPointers & Unsafe CodePointersHow to use C# Structs to create a Union type (Similar to C Unions)BigIntegerDependency InjectionReactive Extensions (Rx)Creational Design PatternsCreating a Console Application using a Plain-Text Editor and the C# Compiler (csc.exe)Reading and writing .zip filesGeneric Lambda Query BuilderImport Google ContactsLambda ExpressionsCLSCompliantAttributeObservableCollection<T>Synchronization Context in Async-AwaitICloneableRead & Understand StacktracesLinq to ObjectsASP.NET IdentityAccess network shared folder with username and passwordAsynchronous SocketStructural Design PatternsO(n) Algorithm for circular rotation of an arrayCreating Own MessageBox in Windows Form ApplicationIncluding Font ResourcesObject Oriented Programming In C#Using json.netGetting Started: Json with C#Windows Communication Foundation

Collection Initializers

Other topics

Remarks:

The only requirement for an object to be initialized using this syntactic sugar is that the type implements System.Collections.IEnumerable and the Add method. Although we call it a collection initializer, the object does not have to be an collection.

Collection initializers

Initialize a collection type with values:

var stringList = new List<string>
{
    "foo",
    "bar",
};

Collection initializers are syntactic sugar for Add() calls. Above code is equivalent to:

var temp = new List<string>();
temp.Add("foo");
temp.Add("bar");
var stringList = temp;

Note that the intialization is done atomically using a temporary variable, to avoid race conditions.

For types that offer multiple parameters in their Add() method, enclose the comma-separated arguments in curly braces:

var numberDictionary = new Dictionary<int, string>
{
    { 1, "One" },
    { 2, "Two" },
};

This is equivalent to:

var temp = new Dictionary<int, string>();
temp.Add(1, "One");
temp.Add(2, "Two");
var numberDictionarynumberDictionary = temp;

C# 6 Index Initializers

Starting with C# 6, collections with indexers can be initialized by specifying the index to assign in square brackets, followed by an equals sign, followed by the value to assign.

Dictionary Initialization

An example of this syntax using a Dictionary:

var dict = new Dictionary<string, int>
{
    ["key1"] = 1,
    ["key2"] = 50
};

This is equivalent to:

var dict = new Dictionary<string, int>();
dict["key1"] = 1;
dict["key2"] = 50

The collection initializer syntax to do this before C# 6 was:

var dict = new Dictionary<string, int>
{
    { "key1", 1 },
    { "key2", 50 }
};

Which would correspond to:

var dict = new Dictionary<string, int>();
dict.Add("key1", 1);
dict.Add("key2", 50);

So there is a significant difference in functionality, as the new syntax uses the indexer of the initialized object to assign values instead of using its Add() method. This means the new syntax only requires a publicly available indexer, and works for any object that has one.

public class IndexableClass
{
    public int this[int index]
    {
        set 
        { 
            Console.WriteLine("{0} was assigned to index {1}", value, index);
        }
    }
}

var foo = new IndexableClass
{
    [0] = 10,
    [1] = 20
}

This would output:

10 was assigned to index 0
20 was assigned to index 1

Collection initializers in custom classes

To make a class support collection initializers, it must implement IEnumerable interface and have at least one Add method. Since C# 6, any collection implementing IEnumerable can be extended with custom Add methods using extension methods.

class Program
{
    static void Main()
    {
        var col = new MyCollection {
            "foo",
            { "bar", 3 },
            "baz",
            123.45d,
        };
    }
}

class MyCollection : IEnumerable
{
    private IList list = new ArrayList();

    public void Add(string item)
    {
        list.Add(item)
    }

    public void Add(string item, int count)
    {
        for(int i=0;i< count;i++) {
            list.Add(item);
        }
    }

    public IEnumerator GetEnumerator()
    {
        return list.GetEnumerator();
    }
}

static class MyCollectionExtensions
{
    public static void Add(this MyCollection @this, double value) => 
        @this.Add(value.ToString());
}

Collection Initializers with Parameter Arrays

You can mix normal parameters and parameter arrays:

public class LotteryTicket : IEnumerable{
    public int[] LuckyNumbers;
    public string UserName;

    public void Add(string userName, params int[] luckyNumbers){
        UserName = userName;
        Lottery = luckyNumbers;
    }
}

This syntax is now possible:

var Tickets = new List<LotteryTicket>{
    {"Mr Cool"  , 35663, 35732, 12312, 75685},
    {"Bruce"    , 26874, 66677, 24546, 36483, 46768, 24632, 24527},
    {"John Cena", 25446, 83356, 65536, 23783, 24567, 89337}
}

Using collection initializer inside object initializer

public class Tag
{
    public IList<string> Synonyms { get; set; }
}

Synonyms is a collection-type property. When the Tag object is created using object initializer syntax, Synonyms can also be initialized with collection initializer syntax:

Tag t = new Tag 
{
    Synonyms = new List<string> {"c#", "c-sharp"}
};

The collection property can be readonly and still support collection initializer syntax. Consider this modified example (Synonyms property now has a private setter):

public class Tag
{
    public Tag()
    {
        Synonyms = new List<string>();
    }
    
    public IList<string> Synonyms { get; private set; }
}

A new Tag object can be created like this:

Tag t = new Tag 
{
    Synonyms = {"c#", "c-sharp"}
};

This works because collection initializers are just syntatic sugar over calls to Add(). There's no new list being created here, the compiler is just generating calls to Add() on the exiting object.

Contributors

Topic Id: 21

Example Ids: 35,53,160,6054,7975

This site is not affiliated with any of the contributors.