Getting started with C# LanguageVerbatim StringsOperatorsExtension MethodsCollection InitializersString InterpolationC# 6.0 FeaturesConstructors and FinalizersKeywordsGenericsReflectionInheritanceNull-Coalescing OperatorUsing StatementString Escape SequencesException HandlingNull-conditional OperatorsBuilt-in TypesLambda expressionsAsync-AwaitPropertiesThreadingUsing DirectiveMethodsYield KeywordEventsLINQ QueriesCommon String OperationsExpression TreesOverload ResolutionString.Formatnameof OperatorUnsafe Code in .NETInitializing PropertiesBindingList<T>ILGeneratorObject initializersXML Documentation CommentsPreprocessor directivesDynamic typeAnonymous typesStructsTuplesEnumAccess ModifiersTask Parallel LibraryAttributesGuidSingleton ImplementationDelegatesNullable typesGarbage Collector in .NetNetworkingArraysEquality OperatorLock StatementAction FiltersXmlDocument and the System.Xml namespaceDateTime MethodsBackgroundWorkerPolymorphismStatic ClassesIndexerIDisposable interfaceAliases of built-in typesImmutabilityXDocument and the System.Xml.Linq namespaceC# 7.0 FeaturesPerforming HTTP requestsGenerating Random Numbers in C#LoopingNamed ArgumentsDiagnosticsInterfacesIEnumerableNaming ConventionsAn overview of c# collectionsChecked and UncheckedRecursionFunctional ProgrammingLiteralsCastingNullReferenceExceptionFunc delegatesLINQ to XMLHash FunctionsHandling FormatException when converting string to other typesCryptography (System.Security.Cryptography)INotifyPropertyChanged interfaceValue type vs Reference typeC# 4.0 FeaturesIQueryable interfaceTask Parallel Library (TPL) Dataflow ConstructsStreamRuntime CompileConditional StatementsInteroperabilityOverflowEquals and GetHashCodeType ConversionParallel LINQ (PLINQ)String ManipulationString ConcatenatePartial class and methodsStopwatchesRegex ParsingC# ScriptC# 3.0 FeaturesAsync/await, Backgroundworker, Task and Thread ExamplesTimersFunction with multiple return valuesBinary SerializationMaking a variable thread safeIComparableCode ContractsIteratorsAssemblyInfo.cs ExamplesFile and Stream I/OCode Contracts and AssertionsCachingC# 5.0 FeaturesImplementing Flyweight Design PatternStringBuilderImplementing Decorator Design PatternAccessing DatabasesT4 Code GenerationMicrosoft.Exchange.WebServices.NET Compiler Platform (Roslyn)Data AnnotationUsing SQLite in C#System.Management.AutomationFileSystemWatcherSystem.DirectoryServices.Protocols.LdapConnectionNamed and Optional ArgumentsComments and regionsC# Authentication handlerPointers & Unsafe CodePointersHow to use C# Structs to create a Union type (Similar to C Unions)BigIntegerDependency InjectionReactive Extensions (Rx)Creational Design PatternsCreating a Console Application using a Plain-Text Editor and the C# Compiler (csc.exe)Reading and writing .zip filesGeneric Lambda Query BuilderImport Google ContactsLambda ExpressionsCLSCompliantAttributeObservableCollection<T>Synchronization Context in Async-AwaitICloneableRead & Understand StacktracesLinq to ObjectsASP.NET IdentityAccess network shared folder with username and passwordAsynchronous SocketStructural Design PatternsO(n) Algorithm for circular rotation of an arrayCreating Own MessageBox in Windows Form ApplicationIncluding Font ResourcesObject Oriented Programming In C#Using json.netGetting Started: Json with C#Windows Communication Foundation

Synchronization Context in Async-Await

Other topics

Pseudocode for async/await keywords

Consider a simple asynchronous method:

async Task Foo()
{
    Bar();
    await Baz();
    Qux();
}

Simplifying, we can say that this code actually means the following:

Task Foo()
{
    Bar();
    Task t = Baz();
    var context = SynchronizationContext.Current;
    t.ContinueWith(task) =>
    {
        if (context == null)
            Qux();
        else
            context.Post((obj) => Qux(), null);
    }, TaskScheduler.Current);

    return t;
}

It means that async/await keywords use current synchronization context if it exists. I.e. you can write library code that would work correctly in UI, Web, and Console applications.

Source article.

Disabling synchronization context

To disable synchronization context you should call the ConfigureAwait method:

async Task() Foo()
{
    await Task.Run(() => Console.WriteLine("Test"));
}

. . .

Foo().ConfigureAwait(false);

ConfigureAwait provides a means to avoid the default SynchronizationContext capturing behavior; passing false for the flowContext parameter prevents the SynchronizationContext from being used to resume execution after the await.

Quote from It's All About the SynchronizationContext.

Why SynchronizationContext is so important?

Consider this example:

private void button1_Click(object sender, EventArgs e)
{
    label1.Text = RunTooLong();
}

This method will freeze UI application until the RunTooLong will be completed. The application will be unresponsive.

You can try run inner code asynchronously:

private void button1_Click(object sender, EventArgs e)
{
    Task.Run(() => label1.Text = RunTooLong());
}

But this code won't execute because inner body may be run on non-UI thread and it shouldn't change UI properties directly:

private void button1_Click(object sender, EventArgs e)
{
    Task.Run(() =>
    {
        var label1Text = RunTooLong();

        if (label1.InvokeRequired)
            lable1.BeginInvoke((Action) delegate() { label1.Text = label1Text; });
        else
            label1.Text = label1Text;
    });
}

Now don't forget always to use this pattern. Or, try SynchronizationContext.Post that will make it for you:

private void button1_Click(object sender, EventArgs e)
{
    Task.Run(() =>
    {
        var label1Text = RunTooLong();
        SynchronizationContext.Current.Post((obj) =>
        {
            label1.Text = label1    Text);
        }, null);
    });
}

Contributors

Topic Id: 7381

Example Ids: 24474,24475,24521

This site is not affiliated with any of the contributors.