Getting started with C# LanguageVerbatim StringsOperatorsExtension MethodsCollection InitializersString InterpolationC# 6.0 FeaturesConstructors and FinalizersKeywordsGenericsReflectionInheritanceNull-Coalescing OperatorUsing StatementString Escape SequencesException HandlingNull-conditional OperatorsBuilt-in TypesLambda expressionsAsync-AwaitPropertiesThreadingUsing DirectiveMethodsYield KeywordEventsLINQ QueriesCommon String OperationsExpression TreesOverload ResolutionString.Formatnameof OperatorUnsafe Code in .NETInitializing PropertiesBindingList<T>ILGeneratorObject initializersXML Documentation CommentsPreprocessor directivesDynamic typeAnonymous typesStructsTuplesEnumAccess ModifiersTask Parallel LibraryAttributesGuidSingleton ImplementationDelegatesNullable typesGarbage Collector in .NetNetworkingArraysEquality OperatorLock StatementAction FiltersXmlDocument and the System.Xml namespaceDateTime MethodsBackgroundWorkerPolymorphismStatic ClassesIndexerIDisposable interfaceAliases of built-in typesImmutabilityXDocument and the System.Xml.Linq namespaceC# 7.0 FeaturesPerforming HTTP requestsGenerating Random Numbers in C#LoopingNamed ArgumentsDiagnosticsInterfacesIEnumerableNaming ConventionsAn overview of c# collectionsChecked and UncheckedRecursionFunctional ProgrammingLiteralsCastingNullReferenceExceptionFunc delegatesLINQ to XMLHash FunctionsHandling FormatException when converting string to other typesCryptography (System.Security.Cryptography)INotifyPropertyChanged interfaceValue type vs Reference typeC# 4.0 FeaturesIQueryable interfaceTask Parallel Library (TPL) Dataflow ConstructsStreamRuntime CompileConditional StatementsInteroperabilityOverflowEquals and GetHashCodeType ConversionParallel LINQ (PLINQ)String ManipulationString ConcatenatePartial class and methodsStopwatchesRegex ParsingC# ScriptC# 3.0 FeaturesAsync/await, Backgroundworker, Task and Thread ExamplesTimersFunction with multiple return valuesBinary SerializationMaking a variable thread safeIComparableCode ContractsIteratorsAssemblyInfo.cs ExamplesFile and Stream I/OCode Contracts and AssertionsCachingC# 5.0 FeaturesImplementing Flyweight Design PatternStringBuilderImplementing Decorator Design PatternAccessing DatabasesT4 Code GenerationMicrosoft.Exchange.WebServices.NET Compiler Platform (Roslyn)Data AnnotationUsing SQLite in C#System.Management.AutomationFileSystemWatcherSystem.DirectoryServices.Protocols.LdapConnectionNamed and Optional ArgumentsComments and regionsC# Authentication handlerPointers & Unsafe CodePointersHow to use C# Structs to create a Union type (Similar to C Unions)BigIntegerDependency InjectionReactive Extensions (Rx)Creational Design PatternsCreating a Console Application using a Plain-Text Editor and the C# Compiler (csc.exe)Reading and writing .zip filesGeneric Lambda Query BuilderImport Google ContactsLambda ExpressionsCLSCompliantAttributeObservableCollection<T>Synchronization Context in Async-AwaitICloneableRead & Understand StacktracesLinq to ObjectsASP.NET IdentityAccess network shared folder with username and passwordAsynchronous SocketStructural Design PatternsO(n) Algorithm for circular rotation of an arrayCreating Own MessageBox in Windows Form ApplicationIncluding Font ResourcesObject Oriented Programming In C#Using json.netGetting Started: Json with C#Windows Communication Foundation

Structural Design Patterns

Other topics

Adapter Design Pattern

“Adapter” as the name suggests is the object which lets two mutually incompatible interfaces communicate with each other.

For example: if you buy a Iphone 8 (or any other Apple product) you need alot of adapters. Because the default interface does not support audio jac or USB. With these adapters you can use earphones with wires or you can use a normal Ethernet cable. So "two mutually incompatible interfaces communicate with each other".

So in technical terms this means: Convert the interface of a class into another interface that a clients expect. Adapter let classes work together that couldn't otherwise because of incompatible interfaces. The classes and objects participating in this pattern are:

The adapter pattern exits out 4 elements

  1. ITarget: This is the interface which is used by the client to achieve functionality.
  2. Adaptee: This is the functionality which the client desires but its interface is not compatible with the client.
  3. Client: This is the class which wants to achieve some functionality by using the adaptee’s code.
  4. Adapter: This is the class which would implement ITarget and would call the Adaptee code which the client wants to call.

UML

enter image description here

First code Example (Theoretical example).

public interface ITarget
{
    void MethodA();
}

public class Adaptee
{
    public void MethodB()
    {
        Console.WriteLine("MethodB() is called");
    }
}

public class Client
{
    private ITarget target;

    public Client(ITarget target)
    {
        this.target = target;
    }

    public void MakeRequest()
    {
        target.MethodA();
    }
}  

public class Adapter : Adaptee, ITarget
{
    public void MethodA()
    {
        MethodB();
    }
}

Second code example (Real world imlementation)

/// <summary>
///  Interface: This is the interface which is used by the client to achieve functionality.
/// </summary>
public interface ITarget
{
    List<string> GetEmployeeList();
}

/// <summary>
/// Adaptee: This is the functionality which the client desires but its interface is not compatible with the client.
/// </summary>
public class CompanyEmplyees
{
    public string[][] GetEmployees()
    {
        string[][] employees = new string[4][];

        employees[0] = new string[] { "100", "Deepak", "Team Leader" };
        employees[1] = new string[] { "101", "Rohit", "Developer" };
        employees[2] = new string[] { "102", "Gautam", "Developer" };
        employees[3] = new string[] { "103", "Dev", "Tester" };

        return employees;
    }
}

/// <summary>
/// Client: This is the class which wants to achieve some functionality by using the adaptee’s code (list of employees).
/// </summary>
public class ThirdPartyBillingSystem
{
    /* 
     * This class is from a thirt party and you do'n have any control over it. 
     * But it requires a Emplyee list to do its work
     */

    private ITarget employeeSource;

    public ThirdPartyBillingSystem(ITarget employeeSource)
    {
        this.employeeSource = employeeSource;
    }

    public void ShowEmployeeList()
    {
        // call the clietn list in the interface
        List<string> employee = employeeSource.GetEmployeeList();

        Console.WriteLine("######### Employee List ##########");
        foreach (var item in employee)
        {
            Console.Write(item);
        }

    }
}

/// <summary>
/// Adapter: This is the class which would implement ITarget and would call the Adaptee code which the client wants to call.
/// </summary>
public class EmployeeAdapter : CompanyEmplyees, ITarget
{
    public List<string> GetEmployeeList()
    {
        List<string> employeeList = new List<string>();
        string[][] employees = GetEmployees();
        foreach (string[] employee in employees)
        {
            employeeList.Add(employee[0]);
            employeeList.Add(",");
            employeeList.Add(employee[1]);
            employeeList.Add(",");
            employeeList.Add(employee[2]);
            employeeList.Add("\n");
        }

        return employeeList;
    }
}

/// 
/// Demo
/// 
class Programs
{
    static void Main(string[] args)
    {
        ITarget Itarget = new EmployeeAdapter();
        ThirdPartyBillingSystem client = new ThirdPartyBillingSystem(Itarget);
        client.ShowEmployeeList();
        Console.ReadKey();
    }
}

When to use

  • Allow a system to use classes of another system that is incompatible with it.
  • Allow communication between new and already existing system which are independent to each other
  • Ado.Net SqlAdapter, OracleAdapter, MySqlAdapter are best example of Adapter Pattern.

Contributors

Topic Id: 9764

Example Ids: 30087

This site is not affiliated with any of the contributors.