Creating DataFrames

Other topics

Create a sample DataFrame

import pandas as pd

Create a DataFrame from a dictionary, containing two columns: numbers and colors. Each key represent a column name and the value is a series of data, the content of the column:

df = pd.DataFrame({'numbers': [1, 2, 3], 'colors': ['red', 'white', 'blue']})

Show contents of dataframe:

print(df)
# Output: 
#   colors  numbers
# 0    red        1
# 1  white        2
# 2   blue        3

Pandas orders columns alphabetically as dict are not ordered. To specify the order, use the columns parameter.

df = pd.DataFrame({'numbers': [1, 2, 3], 'colors': ['red', 'white', 'blue']}, 
                  columns=['numbers', 'colors'])

print(df)  
# Output:     
#    numbers colors
# 0        1    red
# 1        2  white
# 2        3   blue

Create a sample DataFrame using Numpy

Create a DataFrame of random numbers:

import numpy as np
import pandas as pd

# Set the seed for a reproducible sample
np.random.seed(0)  

df = pd.DataFrame(np.random.randn(5, 3), columns=list('ABC'))

print(df)
# Output:
#           A         B         C
# 0  1.764052  0.400157  0.978738
# 1  2.240893  1.867558 -0.977278
# 2  0.950088 -0.151357 -0.103219
# 3  0.410599  0.144044  1.454274
# 4  0.761038  0.121675  0.443863

Create a DataFrame with integers:

df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))

print(df)
# Output:
#     A   B   C
# 0   0   1   2
# 1   3   4   5
# 2   6   7   8
# 3   9  10  11
# 4  12  13  14

Create a DataFrame and include nans (NaT, NaN, 'nan', None) across columns and rows:

df = pd.DataFrame(np.arange(48).reshape(8,6),columns=list('ABCDEF'))

print(df)
# Output: 
#     A   B   C   D   E   F
# 0   0   1   2   3   4   5
# 1   6   7   8   9  10  11
# 2  12  13  14  15  16  17
# 3  18  19  20  21  22  23
# 4  24  25  26  27  28  29
# 5  30  31  32  33  34  35
# 6  36  37  38  39  40  41
# 7  42  43  44  45  46  47

df.ix[::2,0] = np.nan # in column 0, set elements with indices 0,2,4, ... to NaN 
df.ix[::4,1] = pd.NaT # in column 1, set elements with indices 0,4, ... to np.NaT
df.ix[:3,2] = 'nan'   # in column 2, set elements with index from 0 to 3 to 'nan'
df.ix[:,5] = None     # in column 5, set all elements to None
df.ix[5,:] = None     # in row 5, set all elements to None    
df.ix[7,:] = np.nan   # in row 7, set all elements to NaN

print(df)
# Output:
#     A     B     C   D   E     F
# 0 NaN   NaT   nan   3   4  None
# 1   6     7   nan   9  10  None
# 2 NaN    13   nan  15  16  None
# 3  18    19   nan  21  22  None
# 4 NaN   NaT    26  27  28  None
# 5 NaN  None  None NaN NaN  None
# 6 NaN    37    38  39  40  None
# 7 NaN   NaN   NaN NaN NaN   NaN

Create a sample DataFrame from multiple collections using Dictionary

import pandas as pd
import numpy as np

np.random.seed(123) 
x = np.random.standard_normal(4)
y = range(4)
df = pd.DataFrame({'X':x, 'Y':y})
>>> df
          X  Y
0 -1.085631  0
1  0.997345  1
2  0.282978  2
3 -1.506295  3

Create a DataFrame from a list of tuples

You can create a DataFrame from a list of simple tuples, and can even choose the specific elements of the tuples you want to use. Here we will create a DataFrame using all of the data in each tuple except for the last element.

import pandas as pd

data = [
('p1', 't1', 1, 2),
('p1', 't2', 3, 4),
('p2', 't1', 5, 6),
('p2', 't2', 7, 8),
('p2', 't3', 2, 8)
]

df = pd.DataFrame(data)

print(df)
#     0   1  2  3
# 0  p1  t1  1  2
# 1  p1  t2  3  4
# 2  p2  t1  5  6
# 3  p2  t2  7  8
# 4  p2  t3  2  8

Create a DataFrame from a dictionary of lists

Create a DataFrame from multiple lists by passing a dict whose values lists. The keys of the dictionary are used as column labels. The lists can also be ndarrays. The lists/ndarrays must all be the same length.

import pandas as pd
    
# Create DF from dict of lists/ndarrays
df = pd.DataFrame({'A' : [1, 2, 3, 4],
                       'B' : [4, 3, 2, 1]})
df
# Output:
#       A  B
#    0  1  4
#    1  2  3
#    2  3  2
#    3  4  1

If the arrays are not the same length an error is raised

df = pd.DataFrame({'A' : [1, 2, 3, 4], 'B' : [5, 5, 5]}) # a ValueError is raised

Using ndarrays

import pandas as pd
import numpy as np

np.random.seed(123) 
x = np.random.standard_normal(4)
y = range(4)
df = pd.DataFrame({'X':x, 'Y':y})
df
# Output:           X  Y
#         0 -1.085631  0
#         1  0.997345  1
#         2  0.282978  2
#         3 -1.506295  3

See additional details at: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#from-dict-of-ndarrays-lists

Create a sample DataFrame with datetime

import pandas as pd
import numpy as np

np.random.seed(0)
# create an array of 5 dates starting at '2015-02-24', one per minute
rng = pd.date_range('2015-02-24', periods=5, freq='T')
df = pd.DataFrame({ 'Date': rng, 'Val': np.random.randn(len(rng)) }) 

print (df)
# Output:
#                  Date       Val
# 0 2015-02-24 00:00:00  1.764052
# 1 2015-02-24 00:01:00  0.400157
# 2 2015-02-24 00:02:00  0.978738
# 3 2015-02-24 00:03:00  2.240893
# 4 2015-02-24 00:04:00  1.867558

# create an array of 5 dates starting at '2015-02-24', one per day
rng = pd.date_range('2015-02-24', periods=5, freq='D')
df = pd.DataFrame({ 'Date': rng, 'Val' : np.random.randn(len(rng))}) 

print (df)
# Output:
#         Date       Val
# 0 2015-02-24 -0.977278
# 1 2015-02-25  0.950088
# 2 2015-02-26 -0.151357
# 3 2015-02-27 -0.103219
# 4 2015-02-28  0.410599

# create an array of 5 dates starting at '2015-02-24', one every 3 years
rng = pd.date_range('2015-02-24', periods=5, freq='3A')
df = pd.DataFrame({ 'Date': rng, 'Val' : np.random.randn(len(rng))})  

print (df)
# Output:
#         Date       Val
# 0 2015-12-31  0.144044
# 1 2018-12-31  1.454274
# 2 2021-12-31  0.761038
# 3 2024-12-31  0.121675
# 4 2027-12-31  0.443863

DataFrame with DatetimeIndex:

import pandas as pd
import numpy as np

np.random.seed(0)
rng = pd.date_range('2015-02-24', periods=5, freq='T')
df = pd.DataFrame({ 'Val' : np.random.randn(len(rng)) }, index=rng)  

print (df)
# Output:
#                           Val
# 2015-02-24 00:00:00  1.764052
# 2015-02-24 00:01:00  0.400157
# 2015-02-24 00:02:00  0.978738
# 2015-02-24 00:03:00  2.240893
# 2015-02-24 00:04:00  1.867558

Offset-aliases for parameter freq in date_range:

Alias     Description
B         business day frequency  
C         custom business day frequency (experimental)  
D         calendar day frequency  
W         weekly frequency  
M         month end frequency  
BM        business month end frequency  
CBM       custom business month end frequency  
MS        month start frequency  
BMS       business month start frequency  
CBMS      custom business month start frequency  
Q         quarter end frequency  
BQ        business quarter endfrequency  
QS        quarter start frequency  
BQS       business quarter start frequency  
A         year end frequency  
BA        business year end frequency  
AS        year start frequency  
BAS       business year start frequency  
BH        business hour frequency  
H         hourly frequency  
T, min    minutely frequency  
S         secondly frequency  
L, ms     milliseconds  
U, us     microseconds  
N         nanoseconds  

Create a sample DataFrame with MultiIndex

import pandas as pd
import numpy as np

Using from_tuples:

np.random.seed(0)
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                     'foo', 'foo', 'qux', 'qux'],
                      ['one', 'two', 'one', 'two',
                       'one', 'two', 'one', 'two']]))

idx = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

Using from_product:

idx = pd.MultiIndex.from_product([['bar', 'baz', 'foo', 'qux'],['one','two']])

Then, use this MultiIndex:

df = pd.DataFrame(np.random.randn(8, 2), index=idx, columns=['A', 'B'])
print (df)
                     A         B
first second                    
bar   one     1.764052  0.400157
      two     0.978738  2.240893
baz   one     1.867558 -0.977278
      two     0.950088 -0.151357
foo   one    -0.103219  0.410599
      two     0.144044  1.454274
qux   one     0.761038  0.121675
      two     0.443863  0.333674

Save and Load a DataFrame in pickle (.plk) format

import pandas as pd

# Save dataframe to pickled pandas object
df.to_pickle(file_name) # where to save it usually as a .plk

# Load dataframe from pickled pandas object
df= pd.read_pickle(file_name)

Create a DataFrame from a list of dictionaries

A DataFrame can be created from a list of dictionaries. Keys are used as column names.

import pandas as pd
L = [{'Name': 'John', 'Last Name': 'Smith'}, 
         {'Name': 'Mary', 'Last Name': 'Wood'}]
pd.DataFrame(L)
# Output:  Last Name  Name
# 0     Smith  John
# 1      Wood  Mary

Missing values are filled with NaNs

L = [{'Name': 'John', 'Last Name': 'Smith', 'Age': 37},
     {'Name': 'Mary', 'Last Name': 'Wood'}]
pd.DataFrame(L)
# Output:     Age Last Name  Name
#          0   37     Smith  John
#          1  NaN      Wood  Mary

Contributors

Topic Id: 1595

Example Ids: 5174,5175,5582,5586,6134,6438,6439,7238,18798

This site is not affiliated with any of the contributors.