Given the following DataFrame:
In [11]: df = pd.DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])
In [12]: df.set_index(['A', 'B'], inplace=True)
In [13]: df
Out[13]:
C
A B
0.902764 -0.259656 -1.864541
-0.695893 0.308893 0.125199
1.696989 -1.221131 -2.975839
-1.132069 -1.086189 -1.945467
2.294835 -1.765507 1.567853
-1.788299 2.579029 0.792919
Get the values of A
, by name:
In [14]: df.index.get_level_values('A')
Out[14]:
Float64Index([0.902764041011, -0.69589264969, 1.69698924476, -1.13206872067,
2.29483481146, -1.788298829],
dtype='float64', name='A')
Or by number of level:
In [15]: df.index.get_level_values(level=0)
Out[15]:
Float64Index([0.902764041011, -0.69589264969, 1.69698924476, -1.13206872067,
2.29483481146, -1.788298829],
dtype='float64', name='A')
And for a specific range:
In [16]: df.loc[(df.index.get_level_values('A') > 0.5) & (df.index.get_level_values('A') < 2.1)]
Out[16]:
C
A B
0.902764 -0.259656 -1.864541
1.696989 -1.221131 -2.975839
Range can also include multiple columns:
In [17]: df.loc[(df.index.get_level_values('A') > 0.5) & (df.index.get_level_values('B') < 0)]
Out[17]:
C
A B
0.902764 -0.259656 -1.864541
1.696989 -1.221131 -2.975839
2.294835 -1.765507 1.567853
To extract a specific value you can use xs (cross-section):
In [18]: df.xs(key=0.9027639999999999)
Out[18]:
C
B
-0.259656 -1.864541
In [19]: df.xs(key=0.9027639999999999, drop_level=False)
Out[19]:
C
A B
0.902764 -0.259656 -1.864541
Given the following DataFrame:
In [11]: df = pd.DataFrame({'a':[1,1,1,2,2,3],'b':[4,4,5,5,6,7,],'c':[10,11,12,13,14,15]})
In [12]: df.set_index(['a','b'], inplace=True)
In [13]: df
Out[13]:
c
a b
1 4 10
4 11
5 12
2 5 13
6 14
3 7 15
You can iterate by any level of the MultiIndex. For example, level=0
(you can also select the level by name e.g. level='a'
):
In[21]: for idx, data in df.groupby(level=0):
print('---')
print(data)
---
c
a b
1 4 10
4 11
5 12
---
c
a b
2 5 13
6 14
---
c
a b
3 7 15
You can also select the levels by name e.g. `level='b':
In[22]: for idx, data in df.groupby(level='b'):
print('---')
print(data)
---
c
a b
1 4 10
4 11
---
c
a b
1 5 12
2 5 13
---
c
a b
2 6 14
---
c
a b
3 7 15
This example shows how to use column data to set a MultiIndex
in a pandas.DataFrame
.
In [1]: df = pd.DataFrame([['one', 'A', 100], ['two', 'A', 101], ['three', 'A', 102],
...: ['one', 'B', 103], ['two', 'B', 104], ['three', 'B', 105]],
...: columns=['c1', 'c2', 'c3'])
In [2]: df
Out[2]:
c1 c2 c3
0 one A 100
1 two A 101
2 three A 102
3 one B 103
4 two B 104
5 three B 105
In [3]: df.set_index(['c1', 'c2'])
Out[3]:
c3
c1 c2
one A 100
two A 101
three A 102
one B 103
two B 104
three B 105
You can sort the index right after you set it:
In [4]: df.set_index(['c1', 'c2']).sort_index()
Out[4]:
c3
c1 c2
one A 100
B 103
three A 102
B 105
two A 101
B 104
Having a sorted index, will result in slightly more efficient lookups on the first level:
In [5]: df_01 = df.set_index(['c1', 'c2'])
In [6]: %timeit df_01.loc['one']
1000 loops, best of 3: 607 µs per loop
In [7]: df_02 = df.set_index(['c1', 'c2']).sort_index()
In [8]: %timeit df_02.loc['one']
1000 loops, best of 3: 413 µs per loop
After the index has been set, you can perform lookups for specific records or groups of records:
In [9]: df_indexed = df.set_index(['c1', 'c2']).sort_index()
In [10]: df_indexed.loc['one']
Out[10]:
c3
c2
A 100
B 103
In [11]: df_indexed.loc['one', 'A']
Out[11]:
c3 100
Name: (one, A), dtype: int64
In [12]: df_indexed.xs((slice(None), 'A'))
Out[12]:
c3
c1
one 100
three 102
two 101
Given a DataFrame with MultiIndex columns
# build an example DataFrame
midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']], labels=[[1,1,0,],[1,0,1,]])
df = pd.DataFrame(np.random.randn(2,3), columns=midx)
In [2]: df
Out[2]:
one zero
y x y
0 0.785806 -0.679039 0.513451
1 -0.337862 -0.350690 -1.423253
If you want to change the columns to standard columns (not MultiIndex), just rename the columns.
df.columns = ['A','B','C']
In [3]: df
Out[3]:
A B C
0 0.785806 -0.679039 0.513451
1 -0.337862 -0.350690 -1.423253
Start with a standard DataFrame
df = pd.DataFrame(np.random.randn(2,3), columns=['a','b','c'])
In [91]: df
Out[91]:
a b c
0 -0.911752 -1.405419 -0.978419
1 0.603888 -1.187064 -0.035883
Now to change to MultiIndex, create a MultiIndex
object and assign it to df.columns
.
midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']], labels=[[1,1,0,],[1,0,1,]])
df.columns = midx
In [94]: df
Out[94]:
one zero
y x y
0 -0.911752 -1.405419 -0.978419
1 0.603888 -1.187064 -0.035883
MultiIndex can also be used to create DataFrames with multilevel columns. Just use the columns
keyword in the DataFrame command.
midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']], labels=[[1,1,0,],[1,0,1,]])
df = pd.DataFrame(np.random.randn(6,4), columns=midx)
In [86]: df
Out[86]:
one zero
y x y
0 0.625695 2.149377 0.006123
1 -1.392909 0.849853 0.005477
To view all elements in the index change the print options that “sparsifies” the display of the MultiIndex.
pd.set_option('display.multi_sparse', False)
df.groupby(['A','B']).mean()
# Output:
# C
# A B
# a 1 107
# a 2 102
# a 3 115
# b 5 92
# b 8 98
# c 2 87
# c 4 104
# c 9 123