# Extract strings with a specific regex
df= df['col_name'].str.extract[r'[Aa-Zz]']
# Replace strings within a regex
df['col_name'].str.replace('Replace this', 'With this')
For information on how to match strings using regex, see Getting started with Regular Expressions.
Strings in a Series can be sliced using .str.slice()
method, or more conveniently, using brackets (.str[]
).
In [1]: ser = pd.Series(['Lorem ipsum', 'dolor sit amet', 'consectetur adipiscing elit'])
In [2]: ser
Out[2]:
0 Lorem ipsum
1 dolor sit amet
2 consectetur adipiscing elit
dtype: object
Get the first character of each string:
In [3]: ser.str[0]
Out[3]:
0 L
1 d
2 c
dtype: object
Get the first three characters of each string:
In [4]: ser.str[:3]
Out[4]:
0 Lor
1 dol
2 con
dtype: object
Get the last character of each string:
In [5]: ser.str[-1]
Out[5]:
0 m
1 t
2 t
dtype: object
Get the last three characters of each string:
In [6]: ser.str[-3:]
Out[6]:
0 sum
1 met
2 lit
dtype: object
Get the every other character of the first 10 characters:
In [7]: ser.str[:10:2]
Out[7]:
0 Lrmis
1 dlrst
2 cnett
dtype: object
Pandas behaves similarly to Python when handling slices and indices. For example, if an index is outside the range, Python raises an error:
In [8]:'Lorem ipsum'[12]
# IndexError: string index out of range
However, if a slice is outside the range, an empty string is returned:
In [9]: 'Lorem ipsum'[12:15]
Out[9]: ''
Pandas returns NaN when an index is out of range:
In [10]: ser.str[12]
Out[10]:
0 NaN
1 e
2 a
dtype: object
And returns an empty string if a slice is out of range:
In [11]: ser.str[12:15]
Out[11]:
0
1 et
2 adi
dtype: object
str.contains()
method can be used to check if a pattern occurs in each string of a Series. str.startswith()
and str.endswith()
methods can also be used as more specialized versions.
In [1]: animals = pd.Series(['cat', 'dog', 'bear', 'cow', 'bird', 'owl', 'rabbit', 'snake'])
Check if strings contain the letter 'a':
In [2]: animals.str.contains('a')
Out[2]:
0 True
1 False
2 True
3 False
4 False
5 False
6 True
7 True
8 True
dtype: bool
This can be used as a boolean index to return only the animals containing the letter 'a':
In [3]: animals[animals.str.contains('a')]
Out[3]:
0 cat
2 bear
6 rabbit
7 snake
dtype: object
str.startswith
and str.endswith
methods work similarly, but they also accept tuples as inputs.
In [4]: animals[animals.str.startswith(('b', 'c'))]
# Returns animals starting with 'b' or 'c'
Out[4]:
0 cat
2 bear
3 cow
4 bird
dtype: object
In [1]: ser = pd.Series(['lORem ipSuM', 'Dolor sit amet', 'Consectetur Adipiscing Elit'])
Convert all to uppercase:
In [2]: ser.str.upper()
Out[2]:
0 LOREM IPSUM
1 DOLOR SIT AMET
2 CONSECTETUR ADIPISCING ELIT
dtype: object
All lowercase:
In [3]: ser.str.lower()
Out[3]:
0 lorem ipsum
1 dolor sit amet
2 consectetur adipiscing elit
dtype: object
Capitalize the first character and lowercase the remaining:
In [4]: ser.str.capitalize()
Out[4]:
0 Lorem ipsum
1 Dolor sit amet
2 Consectetur adipiscing elit
dtype: object
Convert each string to a titlecase (capitalize the first character of each word in each string, lowercase the remaining):
In [5]: ser.str.title()
Out[5]:
0 Lorem Ipsum
1 Dolor Sit Amet
2 Consectetur Adipiscing Elit
dtype: object
Swap cases (convert lowercase to uppercase and vice versa):
In [6]: ser.str.swapcase()
Out[6]:
0 LorEM IPsUm
1 dOLOR SIT AMET
2 cONSECTETUR aDIPISCING eLIT
dtype: object
Aside from these methods that change the capitalization, several methods can be used to check the capitalization of strings.
In [7]: ser = pd.Series(['LOREM IPSUM', 'dolor sit amet', 'Consectetur Adipiscing Elit'])
Check if it is all lowercase:
In [8]: ser.str.islower()
Out[8]:
0 False
1 True
2 False
dtype: bool
Is it all uppercase:
In [9]: ser.str.isupper()
Out[9]:
0 True
1 False
2 False
dtype: bool
Is it a titlecased string:
In [10]: ser.str.istitle()
Out[10]:
0 False
1 False
2 True
dtype: bool