In [99]: pd.read_json('[{"A": 1, "B": 2}, {"A": 3, "B": 4}]')
Out[99]:
A B
0 1 2
1 3 4
Alternatively to conserve memory:
with open('test.json') as f:
data = pd.DataFrame(json.loads(line) for line in f)
def to_flare_json(df, filename):
"""Convert dataframe into nested JSON as in flare files used for D3.js"""
flare = dict()
d = {"name":"flare", "children": []}
for index, row in df.iterrows():
parent = row[0]
child = row[1]
child_size = row[2]
# Make a list of keys
key_list = []
for item in d['children']:
key_list.append(item['name'])
#if 'parent' is NOT a key in flare.JSON, append it
if not parent in key_list:
d['children'].append({"name": parent, "children":[{"value": child_size, "name": child}]})
# if parent IS a key in flare.json, add a new child to it
else:
d['children'][key_list.index(parent)]['children'].append({"value": child_size, "name": child})
flare = d
# export the final result to a json file
with open(filename +'.json', 'w') as outfile:
json.dump(flare, outfile, indent=4)
return ("Done")
Content of file.json (one JSON object per line):
{"A": 1, "B": 2}
{"A": 3, "B": 4}
How to read directly from a local file:
pd.read_json('file.json', lines=True)
# Output:
# A B
# 0 1 2
# 1 3 4