Reshaping and pivoting

Other topics

Simple pivoting

First try use pivot:

import pandas as pd
import numpy as np

df = pd.DataFrame({'Name':['Mary', 'Josh','Jon','Lucy', 'Jane', 'Sue'],
                   'Age':[34, 37, 29, 40, 29, 31],
                   'City':['Boston','New York', 'Chicago', 'Los Angeles', 'Chicago', 'Boston'],
                   'Position':['Manager','Programmer','Manager','Manager','Programmer', 'Programmer']},
                    columns=['Name','Position','City','Age'])

print (df)
   Name    Position         City  Age
0  Mary     Manager       Boston   34
1  Josh  Programmer     New York   37
2   Jon     Manager      Chicago   29
3  Lucy     Manager  Los Angeles   40
4  Jane  Programmer      Chicago   29
5   Sue  Programmer       Boston   31

print (df.pivot(index='Position', columns='City', values='Age'))
City        Boston  Chicago  Los Angeles  New York
Position                                          
Manager       34.0     29.0         40.0       NaN
Programmer    31.0     29.0          NaN      37.0

If need reset index, remove columns names and fill NaN values:

#pivoting by numbers - column Age
print (df.pivot(index='Position', columns='City', values='Age')
         .reset_index()
         .rename_axis(None, axis=1)
         .fillna(0))
         
     Position  Boston  Chicago  Los Angeles  New York
0     Manager    34.0     29.0         40.0       0.0
1  Programmer    31.0     29.0          0.0      37.0


#pivoting by strings - column Name
print (df.pivot(index='Position', columns='City', values='Name'))   
      
City       Boston Chicago Los Angeles New York
Position                                      
Manager      Mary     Jon        Lucy     None
Programmer    Sue    Jane        None     Josh

Pivoting with aggregating

import pandas as pd
import numpy as np

df = pd.DataFrame({'Name':['Mary', 'Jon','Lucy', 'Jane', 'Sue', 'Mary', 'Lucy'],
                   'Age':[35, 37, 40, 29, 31, 26, 28],
                   'City':['Boston', 'Chicago', 'Los Angeles', 'Chicago', 'Boston', 'Boston', 'Chicago'],
                   'Position':['Manager','Manager','Manager','Programmer', 'Programmer','Manager','Manager'],
                    'Sex':['Female','Male','Female','Female', 'Female','Female','Female']},
                    columns=['Name','Position','City','Age','Sex'])

print (df)
   Name    Position         City  Age  Sex
0  Mary     Manager       Boston   35  Female
1   Jon     Manager      Chicago   37  Male
2  Lucy     Manager  Los Angeles   40  Female
3  Jane  Programmer      Chicago   29  Female
4   Sue  Programmer       Boston   31  Female
5  Mary     Manager       Boston   26  Female
6  Lucy     Manager      Chicago   28  Female

If use pivot, get error:

print (df.pivot(index='Position', columns='City', values='Age'))

ValueError: Index contains duplicate entries, cannot reshape

Use pivot_table with aggregating function:

#default aggfunc is np.mean
print (df.pivot_table(index='Position', columns='City', values='Age'))
City        Boston  Chicago  Los Angeles
Position                                
Manager       30.5     32.5         40.0
Programmer    31.0     29.0          NaN

print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc=np.mean))
City        Boston  Chicago  Los Angeles
Position                                
Manager       30.5     32.5         40.0
Programmer    31.0     29.0          NaN

Another agg functions:

print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc=sum))
City        Boston  Chicago  Los Angeles
Position                                
Manager       61.0     65.0         40.0
Programmer    31.0     29.0          NaN

#lost data !!!
print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc='first'))
City        Boston  Chicago  Los Angeles
Position                                
Manager       35.0     37.0         40.0
Programmer    31.0     29.0          NaN

If need aggregate by columns with string values:

print (df.pivot_table(index='Position', columns='City', values='Name')) 

DataError: No numeric types to aggregate

You can use these aggragating functions:

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='first')) 
City       Boston Chicago Los Angeles
Position                             
Manager      Mary     Jon        Lucy
Programmer    Sue    Jane        None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='last')) 
City       Boston Chicago Los Angeles
Position                             
Manager      Mary    Lucy        Lucy
Programmer    Sue    Jane        None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='sum')) 
City          Boston  Chicago Los Angeles
Position                                 
Manager     MaryMary  JonLucy        Lucy
Programmer       Sue     Jane        None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc=', '.join)) 
City            Boston    Chicago Los Angeles
Position                                     
Manager     Mary, Mary  Jon, Lucy        Lucy
Programmer         Sue       Jane        None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc=', '.join, fill_value='-')
         .reset_index()
         .rename_axis(None, axis=1))
     Position      Boston    Chicago Los Angeles
0     Manager  Mary, Mary  Jon, Lucy        Lucy
1  Programmer         Sue       Jane           -

The information regarding the Sex has yet not been used. It could be switched by one of the columns, or it could be added as another level:

print (df.pivot_table(index='Position', columns=['City','Sex'], values='Age', aggfunc='first'))

City       Boston Chicago       Los Angeles
Sex        Female  Female  Male      Female
Position
Manager      35.0    28.0  37.0        40.0
Programmer   31.0    29.0   NaN         NaN

Multiple columns can be specified in any of the attributes index, columns and values.

print (df.pivot_table(index=['Position','Sex'], columns='City', values='Age', aggfunc='first'))

City               Boston  Chicago  Los Angeles
Position   Sex
Manager    Female    35.0     28.0         40.0
           Male       NaN     37.0          NaN
Programmer Female    31.0     29.0          NaN

Applying several aggregating functions

You can easily apply multiple functions during a single pivot:

In [23]: import numpy as np

In [24]: df.pivot_table(index='Position', values='Age', aggfunc=[np.mean, np.std])
Out[24]: 
                 mean       std
Position                       
Manager     34.333333  5.507571
Programmer  32.333333  4.163332

Sometimes, you may want to apply specific functions to specific columns:

In [35]: df['Random'] = np.random.random(6)
In [36]: df
Out[36]: 
   Name    Position         City  Age    Random
0  Mary     Manager       Boston   34  0.678577
1  Josh  Programmer     New York   37  0.973168
2   Jon     Manager      Chicago   29  0.146668
3  Lucy     Manager  Los Angeles   40  0.150120
4  Jane  Programmer      Chicago   29  0.112769
5   Sue  Programmer       Boston   31  0.185198

For example, find the mean age, and standard deviation of random by Position:

In [37]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': np.std})
Out[37]: 
                  Age    Random
Position                       
Manager     34.333333  0.306106
Programmer  32.333333  0.477219

One can pass a list of functions to apply to the individual columns as well:

In [38]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': [np.mean, np.std]})]
Out[38]: 
                  Age    Random          
                 mean      mean       std
Position                                 
Manager     34.333333  0.325122  0.306106
Programmer  32.333333  0.423712  0.477219

Stacking and unstacking

import pandas as pd
import numpy as np

np.random.seed(0)
tuples = list(zip(*[['bar', 'bar', 'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two','one', 'two']]))

idx = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(6, 2), index=idx, columns=['A', 'B'])
print (df)
                     A         B
first second                    
bar   one     1.764052  0.400157
      two     0.978738  2.240893
foo   one     1.867558 -0.977278
      two     0.950088 -0.151357
qux   one    -0.103219  0.410599
      two     0.144044  1.454274
print (df.stack())
first  second   
bar    one     A    1.764052
               B    0.400157
       two     A    0.978738
               B    2.240893
foo    one     A    1.867558
               B   -0.977278
       two     A    0.950088
               B   -0.151357
qux    one     A   -0.103219
               B    0.410599
       two     A    0.144044
               B    1.454274
dtype: float64

#reset index, rename column name
print (df.stack().reset_index(name='val2').rename(columns={'level_2': 'val1'}))
   first second val1      val2
0    bar    one    A  1.764052
1    bar    one    B  0.400157
2    bar    two    A  0.978738
3    bar    two    B  2.240893
4    foo    one    A  1.867558
5    foo    one    B -0.977278
6    foo    two    A  0.950088
7    foo    two    B -0.151357
8    qux    one    A -0.103219
9    qux    one    B  0.410599
10   qux    two    A  0.144044
11   qux    two    B  1.454274

print (df.unstack())
               A                   B          
second       one       two       one       two
first                                         
bar     1.764052  0.978738  0.400157  2.240893
foo     1.867558  0.950088 -0.977278 -0.151357
qux    -0.103219  0.144044  0.410599  1.454274

rename_axis (new in pandas 0.18.0):

#reset index, remove columns names 
df1 = df.unstack().reset_index().rename_axis((None,None), axis=1)
#reset MultiIndex in columns with list comprehension
df1.columns = ['_'.join(col).strip('_') for col in df1.columns]
print (df1)
  first     A_one     A_two     B_one     B_two
0   bar  1.764052  0.978738  0.400157  2.240893
1   foo  1.867558  0.950088 -0.977278 -0.151357
2   qux -0.103219  0.144044  0.410599  1.454274

pandas bellow 0.18.0

#reset index
df1 = df.unstack().reset_index()
#remove columns names
df1.columns.names = (None, None)
#reset MultiIndex in columns with list comprehension
df1.columns = ['_'.join(col).strip('_') for col in df1.columns]
print (df1)
  first     A_one     A_two     B_one     B_two
0   bar  1.764052  0.978738  0.400157  2.240893
1   foo  1.867558  0.950088 -0.977278 -0.151357
2   qux -0.103219  0.144044  0.410599  1.454274

Cross Tabulation

import pandas as pd
df = pd.DataFrame({'Sex': ['M', 'M', 'F', 'M', 'F', 'F', 'M', 'M', 'F', 'F'], 
               'Age': [20, 19, 17, 35, 22, 22, 12, 15, 17, 22],
               'Heart Disease': ['Y', 'N', 'Y', 'N', 'N', 'Y', 'N', 'Y', 'N', 'Y']})

df

  Age Heart Disease Sex
0   20             Y   M
1   19             N   M
2   17             Y   F
3   35             N   M
4   22             N   F
5   22             Y   F
6   12             N   M
7   15             Y   M
8   17             N   F
9   22             Y   F

pd.crosstab(df['Sex'], df['Heart Disease'])

Hearth Disease  N  Y
Sex                 
F               2  3
M               3  2

Using dot notation:

pd.crosstab(df.Sex, df.Age)

Age  12  15  17  19  20  22  35
Sex                            
F     0   0   2   0   0   3   0
M     1   1   0   1   1   0   1

Getting transpose of DF:

pd.crosstab(df.Sex, df.Age).T

Sex  F  M
Age      
12   0  1
15   0  1
17   2  0
19   0  1
20   0  1
22   3  0
35   0  1

Getting margins or cumulatives:

pd.crosstab(df['Sex'], df['Heart Disease'], margins=True)

Heart Disease  N  Y  All
Sex                     
F              2  3    5
M              3  2    5
All            5  5   10

Getting transpose of cumulative:

pd.crosstab(df['Sex'], df['Age'], margins=True).T


Sex  F  M  All
Age           
12   0  1    1
15   0  1    1
17   2  0    2
19   0  1    1
20   0  1    1
22   3  0    3
35   0  1    1
All  5  5   10

Getting percentages :

pd.crosstab(df["Sex"],df['Heart Disease']).apply(lambda r: r/len(df), axis=1)

Heart Disease    N    Y
Sex                    
F              0.2  0.3
M              0.3  0.2

Getting cumulative and multiplying by 100:

df2 = pd.crosstab(df["Age"],df['Sex'], margins=True ).apply(lambda r: r/len(df)*100, axis=1)

df2

Sex     F     M    All
Age                   
12    0.0  10.0   10.0
15    0.0  10.0   10.0
17   20.0   0.0   20.0
19    0.0  10.0   10.0
20    0.0  10.0   10.0
22   30.0   0.0   30.0
35    0.0  10.0   10.0
All  50.0  50.0  100.0

Removing a column from DF (one way):

df2[["F","M"]]

Sex     F     M
Age            
12    0.0  10.0
15    0.0  10.0
17   20.0   0.0
19    0.0  10.0
20    0.0  10.0
22   30.0   0.0
35    0.0  10.0
All  50.0  50.0

Pandas melt to go from wide to long

>>> df
   ID  Year  Jan_salary  Feb_salary  Mar_salary
0   1  2016        4500        4200        4700
1   2  2016        3800        3600        4400
2   3  2016        5500        5200        5300

>>> melted_df = pd.melt(df,id_vars=['ID','Year'],
                        value_vars=['Jan_salary','Feb_salary','Mar_salary'],
                        var_name='month',value_name='salary')

>>> melted_df
   ID  Year       month  salary
0   1  2016  Jan_salary    4500
1   2  2016  Jan_salary    3800
2   3  2016  Jan_salary    5500
3   1  2016  Feb_salary    4200
4   2  2016  Feb_salary    3600
5   3  2016  Feb_salary    5200
6   1  2016  Mar_salary    4700
7   2  2016  Mar_salary    4400
8   3  2016  Mar_salary    5300

>>> melted_['month'] = melted_['month'].str.replace('_salary','')

>>> import calendar
>>> def mapper(month_abbr):
...     # from http://stackoverflow.com/a/3418092/42346
...     d = {v: str(k).zfill(2) for k,v in enumerate(calendar.month_abbr)}
...     return d[month_abbr]

>>> melted_df['month'] = melted_df['month'].apply(mapper)
>>> melted_df
   ID  Year month  salary
0   1  2016    01    4500
1   2  2016    01    3800
2   3  2016    01    5500
3   1  2016    02    4200
4   2  2016    02    3600
5   3  2016    02    5200
6   1  2016    03    4700
7   2  2016    03    4400
8   3  2016    03    5300

Split (reshape) CSV strings in columns into multiple rows, having one element per row

import pandas as pd

df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1, 'var3': 'XX'},
                   {'var1': 'd,e,f,x,y', 'var2': 2, 'var3': 'ZZ'}])

print(df)

reshaped = \
(df.set_index(df.columns.drop('var1',1).tolist())
   .var1.str.split(',', expand=True)
   .stack()
   .reset_index()
   .rename(columns={0:'var1'})
   .loc[:, df.columns]
)

print(reshaped)

Output:

        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ

  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ

Contributors

Topic Id: 1463

Example Ids: 4770,4771,6787,6821,14482,25462

This site is not affiliated with any of the contributors.