Getting started with Python LanguageList comprehensionsFilterListFunctionsDecoratorsMath ModuleLoopsRandom moduleComparisonsImporting modulesSorting, Minimum and MaximumOperator moduleVariable Scope and BindingBasic Input and OutputFiles & Folders I/OJSON ModuleString MethodsMetaclassesIndexing and SlicingGeneratorsSimple Mathematical OperatorsReduceMap FunctionExponentiationSearchingDictionaryClassesCountingManipulating XMLDate and TimeSetCollections moduleParallel computationMultithreadingWriting extensionsUnit TestingRegular Expressions (Regex)Bitwise OperatorsIncompatibilities moving from Python 2 to Python 3Virtual environmentsCopying dataTupleContext Managers (“with” Statement)Hidden FeaturesEnumString FormattingConditionalsComplex mathUnicode and bytesThe __name__ special variableChecking Path Existence and PermissionsPython NetworkingAsyncio ModuleThe Print Functionos.pathCreating Python packagesParsing Command Line argumentsHTML ParsingSubprocess Librarysetup.pyList slicing (selecting parts of lists)SocketsItertools ModuleRecursionBoolean OperatorsThe dis moduleType Hintspip: PyPI Package ManagerThe locale ModuleExceptionsWeb scraping with PythonDeque ModuleDistributionProperty ObjectsOverloadingDebuggingReading and Writing CSVDynamic code execution with `exec` and `eval`PyInstaller - Distributing Python CodeIterables and IteratorsData Visualization with PythonThe Interpreter (Command Line Console)*args and **kwargsFunctools ModuleGarbage CollectionIndentationSecurity and CryptographyPickle data serialisationurllibBinary DataPython and ExcelIdiomsMethod OverridingDifference between Module and PackageData SerializationPython concurrencyIntroduction to RabbitMQ using AMQPStormPostgreSQLDescriptorCommon PitfallsMultiprocessingtempfile NamedTemporaryFileWorking with ZIP archivesStackProfilingUser-Defined MethodsWorking around the Global Interpreter Lock (GIL)DeploymentLoggingProcesses and ThreadsThe os ModuleComments and DocumentationDatabase AccessPython HTTP ServerAlternatives to switch statement from other languagesList destructuring (aka packing and unpacking)Accessing Python source code and bytecodeMixinsAttribute AccessArcPyPython Anti-PatternsPlugin and Extension ClassesWebsocketsImmutable datatypes(int, float, str, tuple and frozensets)String representations of class instances: __str__ and __repr__ methodsArraysOperator PrecedencePolymorphismNon-official Python implementationsList ComprehensionsWeb Server Gateway Interface (WSGI)2to3 toolAbstract syntax treeAbstract Base Classes (abc)UnicodeSecure Shell Connection in PythonPython Serial Communication (pyserial)Neo4j and Cypher using Py2NeoBasic Curses with PythonPerformance optimizationTemplates in pythonPillowThe pass statementLinked List Nodepy.testDate FormattingHeapqtkinterCLI subcommands with precise help outputDefining functions with list argumentsSqlite3 ModulePython PersistenceTurtle GraphicsConnecting Python to SQL ServerDesign PatternsMultidimensional arraysAudioPygletQueue ModuleijsonWebbrowser ModuleThe base64 ModuleFlaskgroupby()Sockets And Message Encryption/Decryption Between Client and ServerpygameInput, Subset and Output External Data Files using Pandashashlibgetting start with GZipDjangoctypesCreating a Windows service using PythonPython Server Sent EventsMutable vs Immutable (and Hashable) in PythonPython speed of programconfigparserLinked listsCommonwealth ExceptionsOptical Character RecognitionPython Data TypesPartial functionspyautogui modulegraph-toolUnzipping FilesFunctional Programming in PythonPython Virtual Environment - virtualenvsysvirtual environment with virtualenvwrapperCreate virtual environment with virtualenvwrapper in windowsPython Requests PostPlotting with MatplotlibPython Lex-YaccChemPy - python packagepyaudioshelveUsage of "pip" module: PyPI Package ManagerIoT Programming with Python and Raspberry PICode blocks, execution frames, and namespaceskivy - Cross-platform Python Framework for NUI DevelopmentCall Python from C#Similarities in syntax, Differences in meaning: Python vs. JavaScriptWriting to CSV from String or ListRaise Custom Errors / ExceptionsUsing loops within functionsPandas Transform: Preform operations on groups and concatenate the results

Decorators

Other topics

Decorator function

Decorators augment the behavior of other functions or methods. Any function that takes a function as a parameter and returns an augmented function can be used as a decorator.

# This simplest decorator does nothing to the function being decorated. Such
# minimal decorators can occasionally be used as a kind of code markers.
def super_secret_function(f):
    return f

@super_secret_function
def my_function():
    print("This is my secret function.")

The @-notation is syntactic sugar that is equivalent to the following:

my_function = super_secret_function(my_function)

It is important to bear this in mind in order to understand how the decorators work. This "unsugared" syntax makes it clear why the decorator function takes a function as an argument, and why it should return another function. It also demonstrates what would happen if you don't return a function:

def disabled(f):
    """
    This function returns nothing, and hence removes the decorated function
    from the local scope.
    """
    pass

@disabled
def my_function():
    print("This function can no longer be called...")

my_function()
# TypeError: 'NoneType' object is not callable

Thus, we usually define a new function inside the decorator and return it. This new function would first do something that it needs to do, then call the original function, and finally process the return value. Consider this simple decorator function that prints the arguments that the original function receives, then calls it.

#This is the decorator
def print_args(func):
    def inner_func(*args, **kwargs):
        print(args)
        print(kwargs)
        return func(*args, **kwargs) #Call the original function with its arguments.
    return inner_func

@print_args
def multiply(num_a, num_b):
    return num_a * num_b
  
print(multiply(3, 5))
#Output:
# (3,5) - This is actually the 'args' that the function receives.
# {} - This is the 'kwargs', empty because we didn't specify keyword arguments.
# 15 - The result of the function.

Decorator class

As mentioned in the introduction, a decorator is a function that can be applied to another function to augment its behavior. The syntactic sugar is equivalent to the following: my_func = decorator(my_func). But what if the decorator was instead a class? The syntax would still work, except that now my_func gets replaced with an instance of the decorator class. If this class implements the __call__() magic method, then it would still be possible to use my_func as if it was a function:

class Decorator(object):
    """Simple decorator class."""

    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        print('Before the function call.')
        res = self.func(*args, **kwargs)
        print('After the function call.')
        return res

@Decorator
def testfunc():
    print('Inside the function.')

testfunc()
# Before the function call.
# Inside the function.
# After the function call.

Note that a function decorated with a class decorator will no longer be considered a "function" from type-checking perspective:

import types
isinstance(testfunc, types.FunctionType)
# False
type(testfunc)
# <class '__main__.Decorator'>

Decorating Methods

For decorating methods you need to define an additional __get__-method:

from types import MethodType

class Decorator(object):
    def __init__(self, func):
        self.func = func
        
    def __call__(self, *args, **kwargs):
        print('Inside the decorator.')
        return self.func(*args, **kwargs)
    
    def __get__(self, instance, cls):
        # Return a Method if it is called on an instance
        return self if instance is None else MethodType(self, instance)

class Test(object):
    @Decorator
    def __init__(self):
        pass
    
a = Test()

Inside the decorator.

Warning!

Class Decorators only produce one instance for a specific function so decorating a method with a class decorator will share the same decorator between all instances of that class:

from types import MethodType

class CountCallsDecorator(object):
    def __init__(self, func):
        self.func = func
        self.ncalls = 0    # Number of calls of this method
        
    def __call__(self, *args, **kwargs):
        self.ncalls += 1   # Increment the calls counter
        return self.func(*args, **kwargs)
    
    def __get__(self, instance, cls):
        return self if instance is None else MethodType(self, instance)

class Test(object):
    def __init__(self):
        pass
    
    @CountCallsDecorator
    def do_something(self):
        return 'something was done'
    
a = Test()
a.do_something()
a.do_something.ncalls   # 1
b = Test()
b.do_something()
b.do_something.ncalls   # 2

Making a decorator look like the decorated function

Decorators normally strip function metadata as they aren't the same. This can cause problems when using meta-programming to dynamically access function metadata. Metadata also includes function's docstrings and its name. functools.wraps makes the decorated function look like the original function by copying several attributes to the wrapper function.

from functools import wraps

The two methods of wrapping a decorator are achieving the same thing in hiding that the original function has been decorated. There is no reason to prefer the function version to the class version unless you're already using one over the other.

As a function

def decorator(func):
    # Copies the docstring, name, annotations and module to the decorator
    @wraps(func)
    def wrapped_func(*args, **kwargs):
        return func(*args, **kwargs)
    return wrapped_func

@decorator
def test():
    pass

test.__name__

'test'

As a class

class Decorator(object):
    def __init__(self, func):
        # Copies name, module, annotations and docstring to the instance.
        self._wrapped = wraps(func)(self)
        
    def __call__(self, *args, **kwargs):
        return self._wrapped(*args, **kwargs)

@Decorator
def test():
    """Docstring of test."""
    pass

test.__doc__

'Docstring of test.'

Decorator with arguments (decorator factory)

A decorator takes just one argument: the function to be decorated. There is no way to pass other arguments.

But additional arguments are often desired. The trick is then to make a function which takes arbitrary arguments and returns a decorator.

Decorator functions

def decoratorfactory(message):
    def decorator(func):
        def wrapped_func(*args, **kwargs):
            print('The decorator wants to tell you: {}'.format(message))
            return func(*args, **kwargs)
        return wrapped_func
    return decorator

@decoratorfactory('Hello World')
def test():
    pass

test()

The decorator wants to tell you: Hello World

Important Note:

With such decorator factories you must call the decorator with a pair of parentheses:

@decoratorfactory # Without parentheses
def test():
    pass

test()

TypeError: decorator() missing 1 required positional argument: 'func'

Decorator classes

def decoratorfactory(*decorator_args, **decorator_kwargs):
    
    class Decorator(object):
        def __init__(self, func):
            self.func = func

        def __call__(self, *args, **kwargs):
            print('Inside the decorator with arguments {}'.format(decorator_args))
            return self.func(*args, **kwargs)
        
    return Decorator

@decoratorfactory(10)
def test():
    pass

test()

Inside the decorator with arguments (10,)

Create singleton class with a decorator

A singleton is a pattern that restricts the instantiation of a class to one instance/object. Using a decorator, we can define a class as a singleton by forcing the class to either return an existing instance of the class or create a new instance (if it doesn't exist).

def singleton(cls):    
    instance = [None]
    def wrapper(*args, **kwargs):
        if instance[0] is None:
            instance[0] = cls(*args, **kwargs)
        return instance[0]

    return wrapper

This decorator can be added to any class declaration and will make sure that at most one instance of the class is created. Any subsequent calls will return the already existing class instance.

@singleton
class SomeSingletonClass:
    x = 2
    def __init__(self):
        print("Created!")

instance = SomeSingletonClass()  # prints: Created!
instance = SomeSingletonClass()  # doesn't print anything
print(instance.x)                # 2

instance.x = 3
print(SomeSingletonClass().x)    # 3

So it doesn't matter whether you refer to the class instance via your local variable or whether you create another "instance", you always get the same object.

Using a decorator to time a function

import time
def timer(func):
    def inner(*args, **kwargs):
        t1 = time.time()
        f = func(*args, **kwargs)
        t2 = time.time()
        print 'Runtime took {0} seconds'.format(t2-t1)
        return f
    return inner

@timer
def example_function():
    #do stuff


example_function()

Syntax:

  • def decorator_function(f): pass # defines a decorator named decorator_function

  • @decorator_function
    def decorated_function(): pass # the function is now wrapped (decorated by) decorator_function

  • decorated_function = decorator_function(decorated_function) # this is equivalent to using the syntactic sugar @decorator_function

Parameters:

ParameterDetails
fThe function to be decorated (wrapped)

Contributors

Topic Id: 229

Example Ids: 836,837,838,839,10954,28834

This site is not affiliated with any of the contributors.