Using the threading
module, a new thread of execution may be started by creating a new threading.Thread
and assigning it a function to execute:
import threading
def foo():
print "Hello threading!"
my_thread = threading.Thread(target=foo)
The target
parameter references the function (or callable object) to be run. The thread will not begin execution until start
is called on the Thread
object.
Starting a Thread
my_thread.start() # prints 'Hello threading!'
Now that my_thread
has run and terminated, calling start
again will produce a RuntimeError
. If you'd like to run your thread as a daemon, passing the daemon=True
kwarg, or setting my_thread.daemon
to True
before calling start()
, causes your Thread
to run silently in the background as a daemon.
Joining a Thread
In cases where you split up one big job into several small ones and want to run them concurrently, but need to wait for all of them to finish before continuing, Thread.join()
is the method you're looking for.
For example, let's say you want to download several pages of a website and compile them into a single page. You'd do this:
import requests
from threading import Thread
from queue import Queue
q = Queue(maxsize=20)
def put_page_to_q(page_num):
q.put(requests.get('http://some-website.com/page_%s.html' % page_num)
def compile(q):
# magic function that needs all pages before being able to be executed
if not q.full():
raise ValueError
else:
print("Done compiling!")
threads = []
for page_num in range(20):
t = Thread(target=requests.get, args=(page_num,))
t.start()
threads.append(t)
# Next, join all threads to make sure all threads are done running before
# we continue. join() is a blocking call (unless specified otherwise using
# the kwarg blocking=False when calling join)
for t in threads:
t.join()
# Call compile() now, since all threads have completed
compile(q)
A closer look at how join()
works can be found here.
Create a Custom Thread Class
Using threading.Thread
class we can subclass new custom Thread class.
we must override run
method in a subclass.
from threading import Thread
import time
class Sleepy(Thread):
def run(self):
time.sleep(5)
print("Hello form Thread")
if __name__ == "__main__":
t = Sleepy()
t.start() # start method automatic call Thread class run method.
# print 'The main program continues to run in foreground.'
t.join()
print("The main program continues to run in the foreground.")
There are multiple threads in your code and you need to safely communicate between them.
You can use a Queue
from the queue
library.
from queue import Queue
from threading import Thread
# create a data producer
def producer(output_queue):
while True:
data = data_computation()
output_queue.put(data)
# create a consumer
def consumer(input_queue):
while True:
# retrieve data (blocking)
data = input_queue.get()
# do something with the data
# indicate data has been consumed
input_queue.task_done()
Creating producer and consumer threads with a shared queue
q = Queue()
t1 = Thread(target=consumer, args=(q,))
t2 = Thread(target=producer, args=(q,))
t1.start()
t2.start()
Using threading
& queue
:
from socket import socket, AF_INET, SOCK_STREAM
from threading import Thread
from queue import Queue
def echo_server(addr, nworkers):
print('Echo server running at', addr)
# Launch the client workers
q = Queue()
for n in range(nworkers):
t = Thread(target=echo_client, args=(q,))
t.daemon = True
t.start()
# Run the server
sock = socket(AF_INET, SOCK_STREAM)
sock.bind(addr)
sock.listen(5)
while True:
client_sock, client_addr = sock.accept()
q.put((client_sock, client_addr))
echo_server(('',15000), 128)
Using concurrent.futures.Threadpoolexecutor
:
from socket import AF_INET, SOCK_STREAM, socket
from concurrent.futures import ThreadPoolExecutor
def echo_server(addr):
print('Echo server running at', addr)
pool = ThreadPoolExecutor(128)
sock = socket(AF_INET, SOCK_STREAM)
sock.bind(addr)
sock.listen(5)
while True:
client_sock, client_addr = sock.accept()
pool.submit(echo_client, client_sock, client_addr)
echo_server(('',15000))
Python Cookbook, 3rd edition, by David Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian Jones, 978-1-449-34037-7.
This section will contain some of the most advanced examples realized using Multithreading.
A thread that prints everything is received and modifies the output according to the terminal width. The nice part is that also the "already written" output is modified when the width of the terminal changes.
#!/usr/bin/env python2
import threading
import Queue
import time
import sys
import subprocess
from backports.shutil_get_terminal_size import get_terminal_size
printq = Queue.Queue()
interrupt = False
lines = []
def main():
ptt = threading.Thread(target=printer) # Turn the printer on
ptt.daemon = True
ptt.start()
# Stupid example of stuff to print
for i in xrange(1,100):
printq.put(' '.join([str(x) for x in range(1,i)])) # The actual way to send stuff to the printer
time.sleep(.5)
def split_line(line, cols):
if len(line) > cols:
new_line = ''
ww = line.split()
i = 0
while len(new_line) <= (cols - len(ww[i]) - 1):
new_line += ww[i] + ' '
i += 1
print len(new_line)
if new_line == '':
return (line, '')
return (new_line, ' '.join(ww[i:]))
else:
return (line, '')
def printer():
while True:
cols, rows = get_terminal_size() # Get the terminal dimensions
msg = '#' + '-' * (cols - 2) + '#\n' # Create the
try:
new_line = str(printq.get_nowait())
if new_line != '!@#EXIT#@!': # A nice way to turn the printer
# thread out gracefully
lines.append(new_line)
printq.task_done()
else:
printq.task_done()
sys.exit()
except Queue.Empty:
pass
# Build the new message to show and split too long lines
for line in lines:
res = line # The following is to split lines which are
# longer than cols.
while len(res) !=0:
toprint, res = split_line(res, cols)
msg += '\n' + toprint
# Clear the shell and print the new output
subprocess.check_call('clear') # Keep the shell clean
sys.stdout.write(msg)
sys.stdout.flush()
time.sleep(.5)
import threading
import time
class StoppableThread(threading.Thread):
"""Thread class with a stop() method. The thread itself has to check
regularly for the stopped() condition."""
def __init__(self):
super(StoppableThread, self).__init__()
self._stop_event = threading.Event()
def stop(self):
self._stop_event.set()
def join(self, *args, **kwargs):
self.stop()
super(StoppableThread,self).join(*args, **kwargs)
def run()
while not self._stop_event.is_set():
print("Still running!")
time.sleep(2)
print("stopped!"
Based on this Question.